首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

2.
Beatrix E. Beisner 《Oikos》2001,95(3):496-510
Environmental variability in space and time can have significant influences on community structure. Temporal heterogeneity in nutrient supply has been shown in laboratory studies to have strong impacts on the diversity and composition of phytoplankton communities, depending on the scale of fluctuations. This paper extends the work in chemostats in a number of ways: using large-scale field mesocosms with natural plankton communities exposed to various frequencies of vertical mixing, modifying environmental productivity and incorporating higher trophic levels. The first major question and experiment focus on whether vertical mixing at various frequencies, and the associated nutrient pulse, has similar effects in nutrient-rich and nutrient-poor environments for predominantly single trophic level systems. The results indicate that the temporal scale of fluctuation is more of a structuring factor for phytoplankton communities in enriched enclosures, with little response under oligotrophic conditions. The second experiment examines the responsiveness of entire plankton communities (three trophic levels). Major shifts in community structure were absent under both nutrient-rich and nutrient-poor conditions. Responses were seen only in the demography of the top trophic level ( Chaoborus flavicans ). It appears from these experiments that the spatial disruption that accompanies mixing events may be more important than the temporal component (nutrient pulses) for phytoplankton. This appears to be the case only under conditions where natural spatial heterogeneity is high as it is when systems are enriched. When nutrient pulses are small, as they are in oligotrophic systems where recycling is efficient, little phytoplankton community response is observed. Finally, the inclusion of entire plankton food webs here suppressed the effects of the scale of intermittency in water column mixing at both low and high nutrient levels for all but the highest trophic level.  相似文献   

3.
1. The process‐based phytoplankton community model, PROTECH, was used to model the response of algal biomass to a range of mixed layer depths and extinction coefficients for three contrasting lakes: Blelham Tarn (eutrophic), Bassenthwaite Lake (mesotrophic) and Ullswater (oligotrophic). 2. As expected, in most cases biomass and diversity decreased with decreasing light availability caused by increasing the mixed depth and background extinction coefficient. The communities were generally dominated by phytoplankton tolerant of low light. Further, more novel, factors were identified, however. 3. In Blelham Tarn in the second half of the year, biomass and diversity did not generally decline with deeper mixing and the community was dominated by nitrogen‐fixing phytoplankton because that nutrient was limiting to growth. 4. In Bassenthwaite Lake, changing mixed depth influenced the retention time so that, as the mixed depth declined, the flushing rate in the mixed layer increased to the point that only fast‐growing phytoplankton could dominate. 5. In the oligotrophic Ullswater, changing the mixed depth had a greater effect through nutrient supply rather than light availability. This effect was observed when the mixed layer was relatively shallow (<5.5 m) and the driver for this was that the inflowing nutrients were added to a smaller volume of water, thus increasing nutrient concentrations and algal growth. 6. Therefore, whilst changes in mixed depth generally affect the phytoplankton via commonly recognized factors (light availability, sedimentation rate), it also affected phytoplankton growth and community composition through other important factors such as retention time and nutrient supply.  相似文献   

4.
Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton species clusters and niche compression enabled higher biomass accumulation. Our findings suggest that an understanding of factors influencing the emergence of life history traits important to complementarity is necessary to predict the impact of watershed development on phytoplankton productivity and assemblage structure.  相似文献   

5.
Tradeoffs have long been an essential part of the canon explaining the maintenance of species diversity. Despite the intuitive appeal of the idea that no species can be a master of all trades, there has been a scarcity of linked demographic and physiological evidence to support the role of resource use tradeoffs in natural systems. Using five species of Chihuahuan desert summer annual plants, I show that demographic tradeoffs driven by short‐term soil moisture variation act as a mechanism to allow multiple species to partition a limiting resource. Specifically, by achieving highest fitness in either rainfall pulse or interpulse periods, variability reduces fitness differences through time that could promote coexistence on a limiting resource. Differences in fitness are explained in part by the response of photosynthesis to changing soil moisture. My results suggest that increasing weather variability, as predicted under climate change, could increase the opportunity for coexistence in this community.  相似文献   

6.
While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.  相似文献   

7.
It has been hypothesized that allelopathy can prevent competitive exclusion and promote phytoplankton diversity in aquatic ecosystems, where numerous species coexist on a limited number of resources. However, experimental proof‐of‐principle is not available to support this hypothesis. Here we present the first experimental evidence to support this hypothesis by demonstrating that allelopathy promotes the coexistence of two phytoplankton species, Ankistrodesmus falcatus and Oscillatoria sp., that compete for a single limiting nutrient. By performing long‐term competition experiments in nitrate‐limited continuous cultures, and by describing the population dynamics using a mechanistic model, we demonstrate that when allelopathy comes into play, one of the following outcomes is possible depending on the relative initial abundances of the species: dominance of the stronger competitor for nitrate (the non‐allelopathic species), oscillatory coexistence, or dominance of the weaker competitor (the allelopathic species). Our model analysis revealed that sustained oscillatory coexistence of the two species would be a common outcome of this experiment. Our study confirms for the first time, based on laboratory experiments combined with mechanistic models, that allelopathy can alter the predicted outcome of inter‐specific competition in a nutrient‐limited environment and increase the potential for the coexistence of more species than resources, thereby contributing to the identification of endogenous mechanisms that explain the extreme diversity of phytoplankton communities.  相似文献   

8.
Ecosystem consequences of the regional species pool   总被引:1,自引:0,他引:1  
Björn Naeslund  Jon Norberg 《Oikos》2006,115(3):504-512
In this study we analyse with an experiment how the spatial area from which the species pool is sampled, i.e. local vs regional, can have functional consequences for ecosystem processes and structure. Particularly, we analysed how major stocks and processes respond to a change in basal productivity and how this depends on the source of the species pool. The experimental microcosms used in this experiment were developed by inoculating nutrient solution with samples of rockpool sediment containing resting stages. Here we show that communities developed from sediment samples of single origin (local communities) exhibit important differences in ecosystem structure and their response to a productivity gradient compared to systems developed from mixed samples of multiple and spatially dispersed origin (regional communities). The difference between local and regional communities was most pronounced for zooplankton which had much lower abundances in the local communities compared to the regional communities resulting in cascading effects on phytoplankton. We demonstrate that the spatial extend from which the species pool is sampled can affect ecosystem structure and functioning comparable in magnitude to changes in the basal productivity of the system. We discuss with a conceptual model how the regional species pool is important for sustaining diversity in functional groups, and how higher trophic levels are more sensitive to changes in the regional species pool.  相似文献   

9.
Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.  相似文献   

10.
Harpole WS  Suding KN 《Oecologia》2011,166(1):197-205
The niche dimension hypothesis predicts that greater numbers of limiting factors can allow greater numbers of species to coexist through species' tradeoffs for different limiting factors. A prediction that follows is that addition of multiple limiting resources to plant communities will increase productivity and simultaneously decrease diversity. Species loss due to limiting resource enrichment might occur through reducing the number of resources that species compete for or by changing the identity of limiting factors. We tested these predictions of the niche dimension hypothesis in an arid annual grassland by adding combinations of nutrients: nitrogen (N), phosphorus (P), and potassium with other elements (O). We found that species number decreased while biomass increased with greater numbers of added resources. In particular, N in combinations with P or O resulted in the greatest species loss, while biomass increased super-additively with N and P together. The addition of greater numbers of added nutrients decreased the availability of light and soil moisture, consistent with a potential shift in the identity of limiting resources. Species also differed in their responses to different combinations of N, P, and O, supporting predictions of resource-ratio tradeoffs. These results are particularly notable because this experiment was conducted during a drought year in an arid grassland (226 mm annual rainfall), which might have been expected to be water-rather than nutrient-limited. Our results support the hypothesis that plant diversity may be maintained by high-dimensional tradeoffs among species in their abilities to compete for multiple limiting factors.  相似文献   

11.
We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman’s consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs.  相似文献   

12.
Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.  相似文献   

13.
1. Loch Leven is a shallow, eutrophic lake in Scotland, U.K. It has experienced much change over the 30 years that it has been studied; this has primarily been due to reduced nutrient loads to the lake through active catchment management. Its recovery has been slow and, therefore, we used a phytoplankton community model (PROTECH) to test its sensitivity to changing nutrient loads and water temperature.
2. PROTECH was initialized to simulate the observed phytoplankton community in 1995 and was then repeatedly run through a combination of step-wise changes in water temperature and nutrient load (two treatments were simulated for nutrient load: one changing both nitrate and phosphorus, and one changing just phosphorus). The effect on total chlorophyll- a concentration, cyanobacteria abundance and phytoplankton diversity was examined.
3. Whilst changes in temperature had little effect, variations in the nutrient load produced a range of responses. Increasing only the phosphorus load caused a large increase in Anabaena abundance and total chlorophyll- a concentration. However, the opposite response was recorded when nitrate load was changed as well, with Anabaena increasing its biomass under reduced nutrient load scenarios.
4. The key factor determining the type of response appeared to be nitrogen availability. Anabaena , a nitrogen fixer, could exploit the phosphorus resource of Loch Leven under limiting nitrogen conditions, allowing it to dominate under most of the scenarios tested apart from those supplying extra nitrogen to the lake. The model predictions agree with the observed data, which show that Anabaena continues to dominate the summer phytoplankton bloom in Loch Leven despite the considerable reduction in phosphorus supply from the catchment. This research provides a possible explanation for this.  相似文献   

14.
Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.  相似文献   

15.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

16.
Many important transitions in phytoplankton composition of lakes and oceans are related to shifts in nutrient supply ratios. Some phytoplankton transitions, such as cyanobacteria blooms in freshwater supplies and red tides in coastal oceans, are important for aquatic resource management. Therefore, it would be useful to have leading indicators which precede phytoplankton shifts and could be readily monitored in the field. We investigated potential indicators using a well-understood model of phytoplankton dynamics parameterized to mimic the transition toward cyanobacteria blooms in freshwater lakes. In stationary distributions, performance of the indicators depends on whether the species are capable of stable coexistence over a certain range of nutrient inputs. In transient simulations, however, indicators show consistent responses regardless of the possibility of stable coexistence. Leading indicators occurring 10 to 40 days prior to species shift include shift of lag-1 autoregression coefficient toward 0, low standard deviation, fluctuating skewness, and high kurtosis. These responses are different from those reported for critical transitions such as fold bifurcations. Thus, the indicators reveal clues to the mechanisms of important ecosystem transitions. In practice, indicators should be measured for multiple ecosystem variables, and interpretation of the indicators should be guided by experiments and mechanistic site-specific models to help resolve potential ambiguities.  相似文献   

17.
The capture and efficient use of limiting resources influence the competitive success of individual plant species as well as species diversity across resource gradients. In simulations, efficient nutrient acquisition or nutrient retention by species were key predictors of success when nutrients were limiting. Increased nutrient supply favored species with characteristics that improved light interception or light use. Ecological theory suggests that low diversity on fertile sites may be a consequence of competitive exclusion by one or a few species with superior light-interception characteristics. On infertile sites, competitive exclusion may be a function of superior nutrient-acquisition characteristics in species. At intermediate fertility, a shift from single-resource specialization to a balanced effort in the acquisition of multiple resources should allow for greater species diversity. Thus, a unimodal relationship between diversity and nutrient supply, vegetation biomass, or productivity is predicted. However, simulations demonstrated alternate relationships depending on the ecosystem characteristic to which diversity was compared. Diversity was greatest at intermediate total biomass but increased monotonically with net primary production and nitrogen (N) supply. The highest diversity occurred midrange on a scale of community-level leaf area to fine-root length ratios, which in the context of the model indicates that the vegetation as a whole was simultaneously limited by both N and light and that effort toward the acquisition of both resources is distributed in such a way that both resources are equally exploited. Diversity was lowered by the presence of species with a superior ability to sequester resources.  相似文献   

18.
A model for two competing prey species and one predator is formulated in which three essential nutrients can limit growth of all populations. Prey take up dissolved nutrients and predators ingest prey, assimilating a portion of ingested nutrients and recycling or respiring the balance. For all species, the nutrient contents of individuals vary and growth is coupled to increasing content of the limiting nutrient. This model was parameterized to describe a flagellate preying on two bacterial species, with carbon (C), nitrogen (N), and phosphorus (P) as nutrients. Parameters were chosen so that the two prey species would stably coexist without predators under some nutrient supply conditions. Using numerical simulations, the long-term outcomes of competition and predation were explored for a gradient of N:P supply ratios, varying C supply, and varying preference of the predator for the two prey. Coexistence and competitive exclusion both occurred under some conditions of nutrient supply and predator preference. As in simpler models of competition and predation these outcomes were largely governed by apparent competition mediated by the predator, and resource competition for nutrients whose effective supply was partly governed by nutrient recycling also mediated by the predator. For relatively small regions of parameter space, more complex outcomes with multiple attractors or three-species limit cycles occurred. The multiple constraints posed by multiple nutrients held the amplitudes of these cycles in check, limiting the influence of complex dynamics on competitive outcomes for the parameter ranges explored.  相似文献   

19.
Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.  相似文献   

20.
Trait‐based theories of biodiversity consider interspecific tradeoffs among species‐specific traits as prerequisites to maintaining community evenness, a component of species diversity. Such tradeoffs are commonly observed in plant communities, particularly in relation to traits associated with resistance to herbivory. Indeed, global experiments show that interspecific tradeoffs are common between plant defense and growth or competitive ability; however, the positive effects of herbivory on plant diversity predicted by theories with trait‐based tradeoffs are far less commonly observed. Moreover, both the overall and relative importance of these tradeoffs in promoting plant diversity are not well known. To disentangle the relationships among growth, competition, and defense in relation to plant community evenness, we built a model that describes the effects of a shared herbivore on two plant species with the potential to differ in each of these traits. While tradeoffs between plant defense and growth or competitive ability can increase plant diversity via evenness, this is not always the case nor is it a requirement for increased diversity. Herbivores may increase plant diversity even in the absence of defensive tradeoffs, preferentially consuming apparently maladapted species, by limiting the negative effects of interspecific interactions. Therefore, the importance of defensive tradeoffs in increasing diversity may not be as important, or as straightforward, as previously hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号