首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A wide range of diseases are associated with the accumulation of cytosolic protein aggregates. The effects of these aggregates on various aspects of normal cellular protein homeostasis remain to be determined. Here we find that cytosolic aggregates, without necessarily disrupting proteasome function, can markedly delay the normally rapid degradation of nontranslocated secretory and membrane protein precursors. In the case of mammalian prion protein (PrP), the nontranslocated fraction is recruited into preexisting aggregates before its triage for degradation. This recruitment permits the growth and persistence of cytosolic PrP aggregates, explaining their apparent "self-conversion" seen in earlier studies of transient proteasome inhibition. For other proteins, the aggregate-mediated delay in precursor degradation led to aggregation and/or soluble residence in the cytosol, often causing aberrant cellular morphology. Remarkably, improving signal sequence efficiency mitigated these effects of aggregates. These observations identify a previously unappreciated consequence of cytosolic aggregates for nontranslocated secretory and membrane proteins, a minor but potentially disruptive population the rapid disposal of which is critical to maintaining cellular homeostasis.  相似文献   

2.
Chloroplasts in heterokont algae probably originated from a red algal endosymbiont which was engulfed and retained by a eukaryotic host, and are surrounded by four envelope membranes. The outermost of these membranes is called chloroplast ER (CER) and usually connects with the nuclear envelope. This information, however, is based mainly on studies on single‐plastid heterokont algae. In multi‐plastid heterokont algae, it is still unclear whether CER is continuous with the nuclear envelope. Since nuclear‐encoded chloroplast proteins are synthesized by ribosomes on the ER membrane, clarifying the ER‐CER structure in the heterokont algae is important in order to know the targeting pathway of those proteins. We did a detailed ultrastructural observation of endomembrane systems in a multi‐plastid heterokont alga: Heterosigma akashiwo, and confirmed that the CER membrane was continuous with the ER membrane. However, unlike the CER membranes in other heterokont algae, it seemed to have very few ribosome attached. We also performed experiments for protein targeting into canine microsomes using a precursor for a nuclear‐encoded chloroplast protein, a fucoxanthin‐chlorophyll protein (FCP), of H. akashiwo, to see if the protein is targeted to the ER. It demonstrated that the precursor has a functional signal sequence for ER targeting, and is co‐translationally translocated into the microsomes. Based on these data, we propose a hypothesis that, in H. akashiwo, nuclear‐encoded chloroplast protein precursors that have been co‐translationally inserted into the ER lumen are sorted in the ER and transported to the chloroplasts through the ER.  相似文献   

3.
Proteins destined for the secretory pathway are translocated into the endoplasmic reticulum (ER) by signal sequences that vary widely in their functional properties. We have investigated whether differences in signal sequence function have been exploited for cellular benefit. A cytosolic form of the ER chaperone calreticulin was found to arise by an aborted translocation mechanism dependent on its signal sequence and factors in the ER lumen and membrane. A signal sequence that functions independently of these accessory translocation factors selectively eliminated cytosolic calreticulin. In vivo replacement of endogenous calreticulin with a constitutively translocated form influenced glucocorticoid receptor-mediated gene activation without compromising chaperone activity in the ER. Thus, in addition to its well-established ER lumenal functions, calreticulin has an independent role in the cytosol that depends critically on its inefficient compartmentalization. We propose that regulation of protein translocation represents a potentially general mechanism for generating diversity of protein function.  相似文献   

4.
The FFAT motif is a targeting signal responsible for localizing a number of proteins to the cytosolic surface of the endoplasmic reticulum (ER) and to the nuclear membrane. FFAT motifs bind to members of the highly conserved VAP protein family, which are tethered to the cytoplasmic face of the ER by a C-terminal transmembrane domain. We have solved crystal structures of the rat VAP-A MSP homology domain alone and in complex with an FFAT motif. The co-crystal structure was used to design a VAP mutant that disrupts rat and yeast VAP-FFAT interactions in vitro. The FFAT binding-defective mutant also blocked function of the VAP homolog Scs2p in yeast. Finally, overexpression of the FFAT binding-defective VAP in COS7 cells dramatically altered ER morphology. Our data establish the structural basis of FFAT-mediated ER targeting and suggest that FFAT-targeted proteins play an important role in determining ER morphology.  相似文献   

5.
Export of transmembrane proteins from the endoplasmic reticulum (ER) is driven by directed incorporation into coat protein complex II (COPII)‐coated vesicles. The sorting of some cargo proteins into COPII vesicles was shown to be mediated by specific interactions between transmembrane and COPII‐coat‐forming proteins. But even though some signals for ER exit have been identified on the cytosolic domains of membrane proteins, the general signaling and sorting mechanisms of ER export are still poorly understood. To investigate the role of cargo protein oligomer formation in the export process, we have created a transmembrane fusion protein that – owing to its FK506‐binding protein domains – can be oligomerized in isolated membranes by addition of a small‐molecule dimerizer. Packaging of the fusion protein into COPII vesicles is strongly enhanced in the presence of the dimerizer, demonstrating that the oligomeric state is an ER export signal for this membrane protein. Surprisingly, the cytosolic tail is not required for this oligomerization‐dependent effect on protein sorting. Thus, an alternative mechanism, such as membrane bending, must account for ER export of the fusion protein.   相似文献   

6.
We found recently that beta-lactamase folds in the yeast cytosol to a native-like, catalytically active, and trypsin-resistant conformation, and is thereafter translocated into the ER and secreted to the medium. Previously, it was thought that pre-folded proteins cannot be translocated. Here we have studied in living yeast cells whether beta-lactamase, a tight globule in authentic form, must be unfolded for ER translocation. A beta-lactamase mutant (E166A) binds irreversibly benzylpenicillin via Ser(70) in the active site. We fused E166A to the C terminus of a yeast-derived polypeptide having a post-translational signal peptide. In the presence of benzylpenicillin, the E166A fusion protein was not translocated into the endoplasmic reticulum, whereas translocation of the unmutated variant was not affected. The benzylpenicillin-bound protein adhered to the endoplasmic reticulum membrane, where it prevented translocation of BiP, carboxypeptidase Y, and secretory proteins. Although the 321-amino acid-long N-terminal fusion partner adopts no regular secondary structure and should have no constraints for pore penetration, the benzylpenicillin-bound protein remained fully exposed to the cytosol, maintaining its signal peptide. Our data suggest that the beta-lactamase portion must unfold for translocation, that the unfolding machinery is cytosolic, and that unfolding of the remote C-terminal beta-lactamase is required for initiation of pore penetration.  相似文献   

7.
Chloroplasts in heterokont algae are surrounded by four membranes and probably originated from a red algal endosymbiont that was engulfed and retained by eukaryotic host. Understanding how nuclear-encoded chloroplast proteins are translocated from the cytoplasm into the chloroplast across these membranes could give us some insights about how the endosymbiont was integrated into the host cell in the process of secondary symbiogenesis. In multiplastid heterokont algae such as raphidophytes, it has been unclear if the outermost of the four membranes surrounding the chloroplast (the chloroplast endoplasmic reticulum [CER] membrane) is continuous with the nuclear envelope and rough endoplasmic reticulum (ER). Here, we report detailed ultrastructural observations of the raphidophyte Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara that show that the CER membranes were continuous with ER membranes that had attached ribosomes, implying that the chloroplast with three envelope membranes is located within the ER lumen, that is, topologically the same structure as that of monoplastid heterokont algae. However, the CER membrane of H. akashiwo had very few, if any, ribosomes attached, unlike the CER membranes in other heterokont algae. To verify that proteins are first targeted to the ER, we assayed protein import into canine microsomes using a precursor for a nuclear-encoded chloroplast protein, the fucoxanthin-chlorophyll a / c protein of H. akashiwo. This demonstrated that the precursor has a functional signal sequence for ER targeting and is cotranslationally translocated into the ER, where a signal sequence of about 17 amino acids is removed. Based on these data, we hypothesize that in H. akashiwo , nuclear-encoded chloroplast protein precursors that have been cotranslationally transported into the ER lumen are sorted in the ER and transported to the chloroplasts through the ER lumen.  相似文献   

8.
Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.  相似文献   

9.
We have constructed three gene fusions that encode portions of a membrane protein, arginine permease, fused to a reporter domain, the cytoplasmic enzyme histidinol dehydrogenase (HD), located at the C-terminal end. These fusion proteins contain at least one of the internal signal sequences of arginine permease. When the fusion proteins were expressed in Saccharomyces cerevisiae and inserted into the endoplasmic reticulum (ER), two of the fusion proteins placed HD on the luminal side of the ER membrane, but only when a piece of DNA encoding a spacer protein segment was inserted into the fusion joint. The third fusion protein, with or without the spacer included, placed HD on the cytoplasmic side of the membrane. These results suggest that (i) sequences C-terminal to the internal signal sequence can inhibit membrane insertion and (ii) HD requires a preceding spacer segment to be translocated across the ER membrane.  相似文献   

10.
Misfolded secretory and membrane proteins are known to be exported from the endoplasmic reticulum (ER) to the cytosol where they are degraded by proteasomes. When the amount of exported misfolded proteins exceeds the capacity of this degradation mechanism the proteins accumulate in the form of pericentriolar aggregates called aggresomes. Here, we show that the amyloid beta-peptide (Abeta) forms cytosolic aggregates after its export from the ER. These aggregates share several constituents with aggresomes. However, Abeta aggregates are distinct from aggresomes in that they do not accumulate around the centrosome but are distributed randomly around the nucleus. In addition to these cytosolic aggregates, Abeta forms intranuclear aggregates which have as yet not been found for proteins exported from the ER. These findings show that proteins exported from the ER to the cytosol which escape degradation by the proteasome are not necessarily incorporated into aggresomes. We conclude that several distinct aggregation pathways may exist for proteins exported from the ER to the cytosol.  相似文献   

11.
N K Mize  D W Andrews  V R Lingappa 《Cell》1986,47(5):711-719
A stop transfer sequence derived from the extreme carboxyl terminus of membrane IgM heavy chain has been shown to confer predictable transmembrane orientation to secretory proteins by aborting translocation of subsequently synthesized protein domains. Here we demonstrate that, in certain peptide sequence contexts, the same stop transfer sequence is also capable of initiating domain translocation across the endoplasmic reticulum (ER) membrane. Translocation directed by a stop transfer sequence is similar to, but distinguishable from, the action of a conventional signal sequence. Translocation is dependent on participation of the ribosome and protein receptors both in the cytoplasm and in the ER membrane. Moreover, both amino- and carboxy-terminal flanking protein domains can be translocated. Unlike a signal sequence, the stop transfer sequence is not itself translocated across the membrane. These results have implications for the nature of signal sequences, stop transfer sequences, and their receptor interactions.  相似文献   

12.
A calmodulin-dependent translocation pathway for small secretory proteins   总被引:1,自引:0,他引:1  
Shao S  Hegde RS 《Cell》2011,147(7):1576-1588
Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.  相似文献   

13.
The endoplasmic reticulum (ER) is a continuous membrane system comprising the nuclear envelope, ribosome‐studded peripheral sheets and an interconnected network of smooth tubules extending throughout the cell. Although protein biosynthesis, transport and quality control in the ER have been studied extensively, mechanisms underlying the notably diverse architecture of the ER have only emerged recently; this review highlights these new findings and how they relate to ER functional specializations. Several protein families, including reticulons and DP1/REEPs/Yop1, harbour hydrophobic hairpin domains that shape high‐curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1 family of dynamin‐related GTPases mediate the formation of three‐way junctions that characterize the tubular ER network, and additional classes of hydrophobic hairpin‐containing ER proteins interact with and remodel the microtubule cytoskeleton. Flat ER sheets have a different complement of proteins implicated in shaping, cisternal stacking and microtubule interactions. Finally, several shaping proteins are mutated in hereditary spastic paraplegias, emphasizing the particular importance of proper ER morphology and distribution for highly polarized cells.  相似文献   

14.
Iken  K.B.  Greer  S.P.  Amsler  C.D.  & McClintock  J.B. 《Journal of phycology》2000,36(S3):33-33
Chloroplasts in heterokont algae probably originated from a red algal endosymbiont which was engulfed and retained by a eukaryotic host, and are surrounded by four envelope membranes. The outermost of these membranes is called chloroplast ER (CER) and usually connects with the nuclear envelope. This information, however, is based mainly on studies on single-plastid heterokont algae. In multi-plastid heterokont algae, it is still unclear whether CER is continuous with the nuclear envelope. Since nuclear-encoded chloroplast proteins are synthesized by ribosomes on the ER membrane, clarifying the ER-CER structure in the heterokont algae is important in order to know the targeting pathway of those proteins. We did a detailed ultrastructural observation of endomembrane systems in a multi-plastid heterokont alga: Heterosigma akashiwo , and confirmed that the CER membrane was continuous with the ER membrane. However, unlike the CER membranes in other heterokont algae, it seemed to have very few ribosome attached. We also performed experiments for protein targeting into canine microsomes using a precursor for a nuclear-encoded chloroplast protein, a fucoxanthin-chlorophyll protein (FCP), of H. akashiwo , to see if the protein is targeted to the ER. It demonstrated that the precursor has a functional signal sequence for ER targeting, and is co-translationally translocated into the microsomes. Based on these data, we propose a hypothesis that, in H. akashiwo , nuclear-encoded chloroplast protein precursors that have been co-translationally inserted into the ER lumen are sorted in the ER and transported to the chloroplasts through the ER.  相似文献   

15.
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called “ER matrices” together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22?N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells.  相似文献   

16.
Signal sequences function in protein targeting to and translocation across the endoplasmic reticulum membrane. To investigate the structural requirements for signal sequence function, chimeras of the Escherichia coli LamB signal peptide and prolactin were prepared. The LamB signal peptide was chosen by virtue of the extensive biophysical and biological characterization of its activity. In vitro, nascent prolactin chains bearing the LamB signal peptide (LamB) were targeted in a signal recognition particle (SRP)-dependent manner to rough microsomes but remained protease- and salt-sensitive and translocated at low efficiency. Full translocation activity was obtained in a gain of function mutant (LamB*) in which three hydrophobic residues in the LamB hydrophobic core were converted to leucine residues. Cross-linking studies demonstrated that the LamB* signal sequence displayed markedly enhanced interactions with SRP and integral membrane proteins. In contrast, chemically denatured LamB and LamB*-precursors bound with identical efficiencies and in a salt-resistant manner to rough microsomes, suggesting that during de novo synthesis the signal sequence of LamB-bearing precursors assumes a conformation refractory to translocation. These data indicate that a leucine-rich signal sequence is necessary for optimal interaction with SRP and suggest that SRP, by maintaining the signal sequence in a conformation suitable for membrane binding, performs a chaperone function.  相似文献   

17.
Dislocation and degradation from the ER are regulated by cytosolic stress   总被引:9,自引:0,他引:9  
Akey step in ER-associated degradation (ERAD) is dislocation of the substrate protein from the ER into the cytosol to gain access to the proteasome. Very little is known about how this process is regulated, especially in the case of polytopic proteins. Using pulse-chase analysis combined with subcellular fractionation, we show that connexins, the four transmembrane structural components of gap junctions, can be chased in an intact form from the ER membrane into the cytosol of proteasome inhibitor-treated cells. Dislocation of endogenously expressed connexin from the ER was reduced 50-80% when the cytosolic heat shock response was induced by mild oxidative or thermal stress, but not by treatments that instead upregulate the ER unfolded protein response. Cytosolic but not ER stresses slowed the normally rapid degradation of connexins, and led to a striking increase in gap junction formation and function in otherwise assembly-inefficient cell types. These treatments also inhibited the dislocation and turnover of a connexin-unrelated ERAD substrate, unassembled major histocompatibility complex class I heavy chain. Our findings demonstrate that dislocation is negatively regulated by physiologically relevant, nonlethal stress. They also reveal a previously unrecognized relationship between cytosolic stress and intercellular communication.  相似文献   

18.
The majority of transmembrane proteins are integrated into the endoplasmic reticulum (ER) by virtue of a signal sequence‐mediated co‐translational process. However, a substantial portion of transmembrane proteins fails to reach the ER, leading to mislocalized cytosolic polypeptides. Their appropriate recognition and removal are of the utmost importance to avoid proteotoxic stress. Here, we identified UBQLN4 as a BAG6‐binding factor that eliminates newly synthesized defective polypeptides. Using a truncated transmembrane domain protein whose degradation occurs during a pre‐ER incorporation process as a model, we show that UBQLN4 recognizes misassembled proteins in the cytoplasm and targets these to the proteasome. We suggest that the exposed transmembrane segment of the defective polypeptides is essential for the UBQLN4‐mediated substrate discrimination. Importantly, UBQLN4 recognizes not only the defective model substrate but also a pool of endogenous defective proteins that were induced by the depletion of the SRP54 subunit of the signal recognition particle. This study identifies a novel quality control mechanism for newly synthesized and defective transmembrane domain polypeptides that fail to reach their correct destination at the ER membrane.  相似文献   

19.
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae.  相似文献   

20.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号