首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Figueira WF  Booth DJ  Gregson MA 《Oecologia》2008,156(1):215-226
Phenotypic variability within cohorts of juvenile organisms can serve as the basis for selective mortality. Previous studies have demonstrated the important role that predators play in this process but not the impact of competitors on selective predation. We use a combination of lab and field studies to evaluate the effect of the presence of adult competitor damselfish (Dascyllus aruanus and Pomacentrus moluccensis; family Pomacentridae) on the selective mortality of newly-arrived (settled) lemon damselfish (P. moluccensis) by resident predator fishes (Pseudochromis fuscus Pseudochromidae and Cheilodipterus quinquelineatus Apogonidae). Lab trials consisted of mesocosm experiments in which the behaviour, mortality, and physiological condition (measured as lipid content) of surviving P. moluccensis settlers from each of three treatments: (1) predators absent, (2) predators present, and (3) predators and competitors present, were compared. The field study involved stocking newly settled P. moluccensis on natural bommies (patch reefs) which had either been subject to a partial removal of resident fish (predators and competitors) or left alone. Results indicated there was very strong condition-based selective mortality in both the lab and field trials. In both cases there was a strong positive relationship between mortality and the lipid content of surviving fish; implying low-condition fish were selectively removed. The mesocosm trials indicated that the strength of mortality as well as condition selectivity was higher when competitors were present than when they were absent. Behavioural observations in the mesocosm study suggest that attention by juvenile P. moluccensis to the movements and occasional chases of the competitors (especially D. aruanus) reduced their vigilance to the predators. These results suggest the important and interactive roles which condition of newly settled reef fish and interspecific competition can play in the outcomes of post-settlement predation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Christmas Island is located at the overlap of the Indian and Pacific Ocean marine provinces and is a hot spot for marine hybridization. Here, we evaluate the ecological framework and genetic consequences of hybridization between butterflyfishes Chaetodon guttatissimus and Chaetodon punctatofasciatus. Further, we compare our current findings to those from a previous study of hybridization between Chaetodon trifasciatus and Chaetodon lunulatus. For both species groups, habitat and dietary overlap between parental species facilitate frequent heterospecific encounters. Low abundance of potential mates promotes heterospecific pair formation and the breakdown of assortative mating. Despite similarities in ecological frameworks, the population genetic signatures of hybridization differ between the species groups. Mitochondrial and nuclear data from C. guttatissimus × C. punctatofasciatus (1% divergence at cyt b) show bidirectional maternal contributions and relatively high levels of introgression, both inside and outside the Christmas Island hybrid zone. In contrast, C. trifasciatus × C. lunulatus (5% cyt b divergence) exhibit unidirectional mitochondrial inheritance and almost no introgression. Back‐crossing of hybrid C. guttatissimus × C. punctatofasciatus and parental genotypes may eventually confound species‐specific signals within the hybrid zone. In contrast, hybrids of C. trifasciatus and C. lunulatus may coexist with and remain genetically distinct from the parents. Our results, and comparisons with hybridization studies in other reef fish families, indicate that genetic distance between hybridizing species may be a factor influencing outcomes of hybridization in reef fish, which is consistent with predictions from terrestrially derived hybridization theory.  相似文献   

3.
The increase in species richness with area is known as the species–area relationship (SPAR). Although several mutually non-exclusive processes may produce the SPAR, the null, often ignored, hypothesis states that a SPAR can be generated by random placement alone. The log–log-transformed SPAR of coral reef fishes on small patch-reefs revealed a steep slope of 0.55. However, this slope was dependent on the cumulative area of the reef examined and was therefore affected by random placement. After statistically removing the contribution of random placement from the SPAR, the slope was estimated to be 0.21. This is consistent with estimates from other, mostly terrestrial, systems. Furthermore, a randomization procedure, where the probability of fishes to reach a patch was proportional to reef area, showed that the field measured SPAR did not differ from random placement. In addition, fish assemblages on species poor reefs did not form subsets of species rich reefs (i.e., no nestedness) beyond that expected from random placement. Steep log–log-transformed SPARs can be formed by random placement alone, indicating that caution should be used when assigning an ecological meaning to SPARs generated from small spatial scales.  相似文献   

4.
5.
Priest  M. A.  Simpson  S. D.  & Dytham  C. 《Journal of fish biology》2003,63(S1):254-255
The Indo‐Pacific consists of extensive continuous coastlines and many island groups of varying sizes and isolation. The species ranges of coral reef fishes vary enormously from Indo‐Pacific wide to highly endemic. There is also great variation in the early life history characteristics of coral reef fishes ( e.g . pelagic larval durations, spawning strategies and swimming abilities). We use individual‐based models (IBMs) to simulate the dispersal of coral reef fishes in the Indo‐Pacific. The development of dispersal strategies is explored based on ecological and geographical constraints. Simulations are presented for climatic and anthropogenically‐induced events.  相似文献   

6.
Group size is related to parasite infections in primates. This relationship probably reflects the fact that group size is associated with body contact between group members and with contact with contaminated items in the environment. The latter is highly associated with range use. In the present study we hypothesized that if infection by directly transmitted parasites (DTP) is mainly determined by the exposure of individuals to parasites that accumulate in the environment, and group size correlates negatively with the intensity of home range use, then smaller groups should be more infected by DTP. Additionally, groups that share a higher proportion of their home range with other groups should be more infected. To test our hypothesis we observed and collected fecal samples of two groups of Alouatta palliata (large group size) and two groups of A. pigra (small group size) that live sympatrically in a forest fragment located in Macuspana (Mexico). Group size was positively correlated with range area size and negatively correlated with the intensity of home range use. Range use variables were not related to either DTP prevalence or load. However, there were significant differences in DTP loads between groups, which were positively correlated with group size. Our results suggest that the intensity of home range use is a poor predictor of DTP infection parameters in groups with marked differences in size. Therefore, it is possible that the individual or combined effects of other ecological (e.g., microclimate), social (e.g., contact rate), or physiological (e.g., immune function) factors are more important in the dynamics of DTP in free-ranging primates.  相似文献   

7.
The authors studied removal rates of bacteria and the regeneration of inorganic nutrients in coral reef cavities in the reef slope of Curaçao, Netherlands Antilles. We found that in cavities the hard substratum surface area (=ca 68% of cavity surface area) is 65% covered with sessile filter feeders. The cryptic cavity surface area exceeds the projected surface area of the reef by 1.5–8 times. Consequently, the organisms living in these cryptic habitats have potentially a large impact on pico- and nano-plankton densities and are important in reef water nutrient dynamics. We closed cavities (±70 l volume, 15 m depth) in seven experiments to study changes in bacterial densities and dissolved inorganic nutrients (DIN, DIP, and silicate) over time. Water samples were taken from the middle of the cavity at 5-min intervals, for 30 min, and analyzed for heterotrophic bacterial abundance and nutrient concentrations. After closure, bacterial abundance dropped rapidly. Of the initial bacterial concentration in the cavities, 50–60% had disappeared after 30 min, an average disappearance rate of 1.43×104 bacteria ml–1 min–1 (0.62 mg C l–1 d–1; or 30.1 mg C m–2 cavity surface area d–1). NOx concentrations increased significantly during the time of closure. Efflux rates varied between 1.02–9.77 mmol m–2 cavity surface area d–1. NH4+ and PO43– concentrations were variable and did not show a consistent change over time in the experiments. Comparison of bacterial organic nitrogen disappearance rates and DIN (NOx+NH4+) release rates suggests that on average only 30–40% of additional sources of N besides bacteria were required to balance the nitrogen budget. This highlights the importance of heterotrophic bacterioplankton as food for cryptic filter feeders on coral reefs. Silicate concentrations significantly decreased after closure with 0.50 mmol m–2 cavity surface area d–1, suggesting the net deposition of SiO42– in spicules of cryptic filter feeding sponges. We conclude that coral reef cavities are a major sink for heterotrophic bacteria, a sink for dissolved silicon (DSi), and a source for NOx. That reef cavities are a source for NOx suggests strong remineralization and nitrification in cavities with a potential role for sponge-symbiotic microbial nitrification.Communicated by K.S. Sealey  相似文献   

8.
Coral reefs worldwide are shifting from high-diversity, coral-dominated communities to low-diversity systems dominated by seaweeds. This shift can impact essential recovery processes such as larval recruitment and ecosystem resilience. Recent evidence suggests that chemical cues from certain corals attract, and from certain seaweeds suppress, recruitment of juvenile fishes, with loss of coral cover and increases in seaweed cover creating negative feedbacks that prevent reef recovery and sustain seaweed dominance. Unfortunately, the level of seaweed increase and coral decline that creates this chemically cued tipping point remains unknown, depriving managers of data-based targets to prevent damaging feedbacks. We conducted flume and field assays that suggest juvenile fishes sense and respond to cues produced by low levels of seaweed cover. However, the herbivore species we tested was more tolerant of degraded reef cues than non-herbivores, possibly providing some degree of resilience if these fishes recruit, consume macroalgae, and diminish negative cues.  相似文献   

9.
Why are there about 5000 species of phytoplankton in the sea?   总被引:1,自引:0,他引:1  
The relative abundances of phytoplankton taxa conform approximatelyto a finite geometric series in which there are 20–25species per decade of ranked abundance. Such series can contain160–400 species between the commonest (1022–1026cells) and the rarest (1010–1014 cells). Thus, between12 and 31 such series are needed to explain the observed diversity,5x103 species, of marine phytoplankton. The number of seriesis similar to the number (20–25) of upper-ocean watermasses defined by dilution time scale of order 101–102years. Interpretations of this coincidence are discussed.  相似文献   

10.
Increased frequency of disturbances and anthropogenic activities are predicted to have a devastating impact on coral reefs that will ultimately change the composition of reef associated fish communities. We reviewed and analysed studies that document the effects of disturbance‐mediated coral loss on coral reef fishes. Meta‐analysis of 17 independent studies revealed that 62% of fish species declined in abundance within 3 years of disturbances that resulted in >10% decline in coral cover. Abundances of species reliant on live coral for food and shelter consistently declined during this time frame, while abundance of some species that feed on invertebrates, algae and/or detritus increased. The response of species, particularly those expected to benefit from the immediate loss of coral, is, however, variable and is attributed to erratic replenishment of stocks, ecological versatility of species and sublethal responses, such as changes in growth, body condition and feeding rates. The diversity of fish communities was found to be negatively and linearly correlated to disturbance‐mediated coral loss. Coral loss >20% typically resulted in a decline in species richness of fish communities, although diversity may initially increase following small declines in coral cover from high coverage. Disturbances that result in an immediate loss of habitat complexity (e.g. severe tropical storms), have a greater impact on fishes from all trophic levels, compared with disturbances that kill corals, but leave the reef framework intact (e.g. coral bleaching and outbreaks of Acanthaster planci). This is most evident among small bodied species and suggests the long‐term consequences of coral loss through coral bleaching and crown‐of‐thorn starfish outbreaks may be much more substantial than the short‐term effects currently documented.  相似文献   

11.
Neophobia—the generalized fear response to novel stimuli—provides the first potential strategy that predator-naive prey may use to survive initial predator encounters. This phenotype appears to be highly plastic and present in individuals experiencing high-risk environments, but rarer in those experiencing low-risk environments. Despite the appeal of this strategy as a ‘solution’ for prey naivety, we lack evidence that this strategy provides any fitness benefit to prey. Here, we compare the relative effect of environmental risk (high versus low) and predator-recognition training (predator-naive versus predator-experienced individuals) on the survival of juvenile fish in the wild. We found that juveniles raised in high-risk conditions survived better than those raised in low-risk conditions, providing the first empirical evidence that environmental risk, in the absence of any predator-specific information, affects the way naive prey survive in a novel environment. Both risk level and experience affected survival; however, the two factors did not interact, indicating that the information provided by both factors did not interfere or enhance each other. From a mechanistic viewpoint, this indicates that the combination of the two factors may increase the intensity, and hence efficacy, of prey evasion strategies, or that both factors provide qualitatively separate benefits that would result in an additive survival success.  相似文献   

12.
A number of tropical coral reef fish hold station and display restricted home ranges. If artificially displaced, they will return to their home site. We questioned if marine fish are using the same mechanisms for home site detection as many freshwater fish, that is, by olfactory sensing of chemical signals deposited on the substrate by conspecific fish. Behavioral experiments were conducted on Lizard Island Research Station, Queensland, Australia, in 2001 and 2002. Five-lined cardinalfish (Cheilodipterus quinquelineatus) were tested in groups with split-branded cardinalfish (Apogon compressus) as a reference species and individually against Apogon leptacanthus as well as conspecifics of another reef site. The group tests showed that both species preferred artificial reef sites that had previously been occupied by conspecifics. Individual C. quinquelineatus preferred scent of conspecifics from their own reef site to that from another site. They also preferred the scent released by artificial reefs previously occupied by conspecifics of their reef site to that of similar reefs previously occupied by conspecifics of another reef site. No discrimination between species from the same reef site was obtained in experiments with individual fish. Our data suggest that cardinalfish are keeping station and are homing by use of conspecific olfactory signals.  相似文献   

13.
The architectural complexity of coral reefs is largely generated by reef‐building corals, yet the effects of current regional‐scale declines in coral cover on reef complexity are poorly understood. In particular, both the extent to which declines in coral cover lead to declines in complexity and the length of time it takes for reefs to collapse following coral mortality are unknown. Here we assess the extent of temporal and spatial covariation between coral cover and reef architectural complexity using a Caribbean‐wide dataset of temporally replicated estimates spanning four decades. Both coral cover and architectural complexity have declined rapidly over time, with little evidence of a time‐lag. However, annual rates of change in coral cover and complexity do not covary, and levels of complexity vary greatly among reefs with similar coral cover. These findings suggest that the stressors influencing Caribbean reefs are sufficiently severe and widespread to produce similar regional‐scale declines in coral cover and reef complexity, even though reef architectural complexity is not a direct function of coral cover at local scales. Given that architectural complexity is not a simple function of coral cover, it is important that conservation monitoring and restoration give due consideration to both architecture and coral cover. This will help ensure that the ecosystem services supported by architectural complexity, such as nutrient recycling, dissipation of wave energy, fish production and diversity, are maintained and enhanced.  相似文献   

14.
15.
Most studies of fish sounds show that the sounds are species-specific, with unique spectral and timing characteristics. This raises the question as to whether these sounds can be used to understand phyletic relationships between species and which acoustic parameters are subject to variation between species. In the present study, 597 sounds (and 2540 pulses) related to signal jumps of four Dascyllus species ( Dascyllus aruanus , Dascyllus trimaculatus , Dascyllus albisella , and Dascyllus flavicaudus ) from different geographic regions (Madagascar, Moorea, Rangiroa, and Hawaii) were analysed. It was possible to discern species-specific sounds, but also variation in sounds between populations. Large variations in sound length were found between Dascyllus species, whereas differences in interpulse duration were found to be variable between populations. In the regions where species live in sympatry, it appears that they restrict the variability in their sounds. This could comprise evidence of adaptation with character displacement of sonic characteristics where different species co-occur. However, sonic characteristics still overlapped substantially between species, suggesting that females would need to sample more than one sound and potentially use other cues to discriminate between species.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 928–940.  相似文献   

16.
Abstract

Four scarab beetles (Acrossidius tasmaniae) and two unidentified weevils were recovered from the guts of a single individual of six deep‐sea fishes trawled from depths of 326–418 m, c. 30–40 km off the Wairarapa coast, North Island, New Zealand. These constitute the first records of terrestrial arthropods in the diet of deep‐sea fishes from the New Zealand region. Possible reasons describing how these terrestrial beetles came to be eaten by these fishes are discussed.  相似文献   

17.
Stone marten (Martes foina) and European pine marten (M. martes) occur in western Eurasia. Current distributions of martens within Turkey and phylogenetic relationships among the Turkish and other populations of the two species within Eurasia remain relatively unknown. In this study, we aimed to determine genetic diversity within Martes populations inhabiting Turkey and to reveal the phylogenetic relationships among the Turkish and conspecific populations of the two marten species, using mitochondrial cytochrome b (CytB) sequences. Twenty‐four (24) haplotypes were identified among 86 marten samples collected across Turkey, including 23 novel haplotypes. Genetic distances among the Turkish haplotypes ranged from 0.1% to 0.8%, with an average of 0.3%. The 24 Turkish haplotypes were analysed together with those of conspecific populations deposited in GenBank. Phylogenetic (Bayesian Inference, maximum likelihood, neighbor‐joining) and network analyses revealed that all of the Turkish samples belonged to M. foina and that samples of M. martes were not encountered. Haplotypes of M. foina were divided into five haplogroups. The haplogroup including the two Chinese samples differed markedly from other the haplogroups. The remaining haplogroups contained samples from both the Turkish and European populations. We found that there was a genetically close relationship between the Turkish and the European stone marten populations. As a result of this study, M. martes may not be distributed in the Anatolian part of Turkey, possibly due to a barrier effect of two straits (Dardanelles and Bosporus) and the Caucasus Mountains. On the other hand, M. foina is distributed in both the Anatolian and Thracian parts of Turkey. Our results suggest that Turkey was likely one of the refuges for M. foina during Pleistocene glacial periods and is one of the centres of distribution of stone marten for Europe and the surrounding regions.  相似文献   

18.
Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae (r 2 = 0.59; P = 0.026), Siganidae (r 2 = 0.72; P = 0.004), and Acanthuridae (r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae (r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.  相似文献   

19.
Refuge theory proposes that a determinant of species richness (and percent parasitism) is the presence of host refuges. Plant structural refuges are good predictors of species richness for endophytic herbivores, but not for exophytic herbivores. For exophytic herbivores other traits such as relative abundance may provide refuge from parasitism. Using unbiased data on both relative abundance and larval parasitism of species in macrolepidopteran assemblages we tested the null hypothesis that percent parasitism was independent of abundance. Numerically subdominant species do not gain refuge from parasitism by persisting at low abundance. Parasitism was not different from what would be expected based on their numbers. Among numerically dominant species there was, nevertheless, a significant positive association between abundance and parasitism rate. However, dominant herbivores displayed high levels of parasitism even in the years when their abundance was low relative to other years. This suggests that dominant species may possess other traits that enhance their susceptibility to parasitoids.  相似文献   

20.
Tuber aestivum and Tuber uncinatum: two morphotypes or two species?   总被引:2,自引:0,他引:2  
Tuber spp. are ectomycorrhizal fungi that establish symbioses with shrubs and trees. Because of their different smell and taste, Tuber uncinatum and Tuber aestivum are two truffle morphotypes with a different market value, but whether or not T. uncinatum and T. aestivum are different taxa is still an open debate among mycologists. In order to identify molecular keys characterizing both T. aestivum and T. uncinatum morphotypes, ITS/RFLPs analyses were carried out on a large collection of samples from all over Italy and from other European countries, followed by a study of the phylogenesis of ITS, beta-tubulin and EF 1-alpha genes, on representative samples. The present study provides compelling evidence that: (i) T. uncinatum and T. aestivum belong to the same species, (ii) neither morphotype presents a specific molecular fingerprint, but they may even share identical alleles at any of the loci analysed; (iii) T. aestivum is most likely under a selfing reproductive mode. Our findings suggest that ecological, rather than genetic causes may account for differences in sporal morphology, taste and smell between T. aestivum and T. uncinatum truffles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号