首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Liver sinusoidal endothelial cells (LSECs) react to different anti-actin agents by increasing their number of fenestrae. A new structure related to fenestrae formation could be observed when LSECs were treated with misakinolide. In this study, we investigated the effects of two new actin-binding agents on fenestrae dynamics. High-resolution microscopy, including immunocytochemistry and a combination of fluorescence- and scanning electron microscopy was applied.  相似文献   

2.
3.
Liver sinusoidal endothelial cells (LSECs) undergo capillarization, or loss of fenestrae, and produce basement membrane during liver fibrotic progression. DLL4, a ligand of the Notch signaling pathway, is predominantly expressed in endothelial cells and maintains liver sinusoidal homeostasis. The aim of this study was to explore the role of DLL4 in LSEC capillarization. The expression levels of DLL4 and the related genes, capillarization markers and basement membrane proteins were assessed by immunohistochemistry, immunofluorescence, RT-PCR and immunoblotting as appropriate. Fenestrae and basement membrane formation were examined by electron microscopy. We found DLL4 was up-regulated in the LSECs of human and CCl4-induced murine fibrotic liver, consistent with LSEC capillarization and liver fibrosis. Primary murine LSECs also underwent capillarization in vitro, with concomitant DLL4 overexpression. Bioinformatics analysis confirmed that DLL4 induced the production of basement membrane proteins in LSECs, which were also increased in the LSECs from 4 and 6-week CCl4-treated mice. DLL4 overexpression also increased the coverage of liver sinusoids by hepatic stellate cells (HSCs) through endothelin-1 (ET-1) synthesis. The hypoxic conditions that was instrumental in driving DLL4 overexpression in the LSECs. Consistent with the above findings, DLL4 silencing in vivo alleviated LSEC capillarization and CCl4-induced liver fibrosis. In conclusion, DLL4 mediates LSEC capillarization and the vicious circle between fibrosis and pathological sinusoidal remodeling.  相似文献   

4.
Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.  相似文献   

5.
The spectrin-actin junction of erythrocyte membrane skeletons   总被引:30,自引:0,他引:30  
High-resolution electron microscopy of erythrocyte membrane skeletons has provided striking images of a regular lattice-like organization with five or six spectrin molecules attached to short actin filaments to form a sheet of five- and six-sided polygons. Visualization of the membrane skeletons has focused attention on the (spectrin)5,6-actin oligomers, which form the vertices of the polygons, as basic structural units of the lattice. Membrane skeletons and isolated junctional complexes contain four proteins that are stable components of this structure in the following ratios: 1 mol of spectrin dimer, 2-3 mol of actin, 1 mol of protein 4.1 and 0.1-0.5 mol of protein 4.9 (numbers refer to mobility on SDS gels). Additional proteins have been identified that are candidates to interact with the junction, based on in vitro assays, although they have not yet been localized to this structure and include: tropomyosin, tropomyosin-binding protein and adducin. The spectrin-actin complex with its associated proteins has a key structural role in mediating cross-linking of spectrin into the network of the membrane skeleton, and is a potential site for regulation of membrane properties. The purpose of this article is to review properties of known and potential constituent proteins of the spectrin-actin junction, regulation of their interactions, the role of junction proteins in erythrocyte membrane dysfunction, and to consider aspects of assembly of the junctions.  相似文献   

6.
Background information. Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin‐binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin‐associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N‐terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin‐like proteins could act as structural nuclear ABPs in plants. Results. We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α‐ and β‐spectrin chains that cross‐react in plant nuclei. Their role as nuclear ABPs was analysed by co‐immunoprecipitation and IF (immunofluorescence) co‐localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non‐ionic detergent, and in low‐ and high‐salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin‐like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co‐immunoprecipitate and co‐localize with actin. Conclusions. These results reveal that the plant nucleus contains spectrin‐like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin‐like proteins could be involved in multiple nuclear functions.  相似文献   

7.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

8.
A part of the spectrin extracted from red cell membranes at low ionic strength occurs in the form of a high-molecular weight oligomeric complex with actin and proteins 4.1 and 4.9. When the extraction is performed at 35 degrees, the spectrin is present in this complex as the dimer, all higher forms being dissociated. We have been unable to establish any correlation between the fraction of the spectrin thus complexed and the metabolic state of the cell. At least a large part of the complex appears to be a defined monodisperse species, sedimenting at 31S. The actin is present as short protofilaments. The average number of spectrin molecules associated with each molecule of complex has been studied by cytochalasin binding and electron microscopy. The complexes present the appearance in the electron microscope of spiders, in which the legs are spectrin dimers, attached to a globular element, containing by inference, actin and proteins 4.1 and 4.9; they are active in nucleating the polymerization of G-actin. The complexes are extremely stable, being resistant to dissociation under the conditions of the deoxyribonuclease assay, even after treatment with trypsin to degrade the actin-associated proteins. It is suggested that the complexes represent intact junctions of the membrane cytoskeletal network. Relevant structural features of the network are revealed by electron microscopy. The results lead to inferences concerning the mechanism of dissociation of the network from the membrane.  相似文献   

9.
The red cell membrane skeletal network is constructed from actin, spectrin and protein 4.1 in a molar ratio of actin subunits/spectrin heterodimer/protein 4.1 of 2:1:1. This represents saturation of the actin filaments, since incubation with extraneous spectrin and protein 4.1 leads to no binding of additional spectrin, either to the inner surface of ghost membranes or to lipid-free membrane cytoskeletons. Partial extraction of spectrin from the membrane is accompanied by release of actin under all conditions. Regardless of the proportion of spectrin extracted, the molar ratio of spectrin dimers/actin subunits is constant at 1:2. This is not the result of release or cooperative breakdown of whole lattice junctions from the network, for the number of actin filaments, judged by capacity to nucleate polymerisation of added G-actin, remains unchanged even when as much as 60% of the total spectrin has been lost. A similar 1:2:1 stoichiometry characterises the complex formed when G-actin is allowed to polymerise in the presence of varying amounts of spectrin and protein 4.1. When this complex is treated with the depolymerising agent, 1 M guanidine hydrochloride, it breaks down into smaller units of the same stoichiometry. After cross-linking these can be recovered from a gel-filtration column. Complexes prepared starting from G-actin appear to be much more stable than those formed when spectrin and protein 4.1 are bound to F-actin.  相似文献   

10.
Although liver sinusoidal endothelial cells (LSECs) have long been known to contribute to liver regeneration following injury, the exact role of these cells in liver regeneration remains poorly understood. In this work, we performed lineage tracing of LSECs in mice carrying Tie2‐Cre or VE‐cadherin‐Cre constructs to facilitate fate‐mapping of LSECs in liver regeneration. Some YFP‐positive LSECs were observed to convert into hepatocytes following a two‐thirds partial hepatectomy (PH). Furthermore, human umbilical vein endothelial cells (HUVECs) could be triggered to convert into cells that closely resembled hepatocytes when cultured with serum from mice that underwent an extended PH. These findings suggest that mature non‐hepatocyte LSECs play an essential role in mammalian liver regeneration by converting to hepatocytes. The conversion of LSECs to hepatocyte‐like (iHep) cells may provide a new approach to tissue engineering.  相似文献   

11.
We isolated a protein complex containing major cytoskeletal components from the Triton shell of bovine erythrocytes. This protein complex, which we called the 26-S complex, consisted of three major components, spectrin, band-4.1 protein and actin, and one minor component, band-4.9 protein. The molar ratio of spectrin heterodimer:band 4.1:actin was determined by sodium dodecyl sulfate (SDS) gel electrophoresis to be about 1:2:2, approximately the same as that for the Triton shell. By electron microscopic examinations of rotary-shadowed specimens, it was revealed that the 26-S complex had a "spider-like" morphology with a central core and several spectrin heterodimers radiating from it. The number of spectrin arms in the complex was not constant but was in the range between 3 and 6. The complexes with five spectrin heterodimers were the most numerous. The results showed that the 26-S complex contained on the average five spectrin heterodimers, ten band-4.1 polypeptides and ten actin monomers. As judged from the formation of oligomeric 26-S complexes through spectrin arms, the central core of the complex presumably contains band 4.1 and actin. Supporting this conclusion, the central core acted as a nucleus for actin polymerization when the 26-S complex was mixed with G-actin under an actin-polymerizing condition. The 26-S complex could form large aggregates under a certain condition that spectrin was promoted to associate from dimer to tetramer. We conclude that the 26-S complex is the structural unit of the erythrocyte cytoskeleton.  相似文献   

12.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

13.
Aspectrin-based skeleton uniformly underlies and supports the plasma membrane of the resting platelet, but remodels and centralizes in the activated platelet. alpha-Adducin, a phosphoprotein that forms a ternary complex with F-actin and spectrin, is dephosphorylated and mostly bound to spectrin in the membrane skeleton of the resting platelet at sites where actin filaments attach to the ends of spectrin molecules. Platelets activated through protease-activated receptor 1, FcgammaRIIA, or by treatment with PMA phosphorylate adducin at Ser726. Phosphoadducin releases from the membrane skeleton concomitant with its dissociation from spectrin and actin. Inhibition of PKC blunts adducin phosphorylation and release from spectrin and actin, preventing the centralization of spectrin that normally follows cell activation. We conclude that adducin targets actin filament ends to spectrin to complete the assembly of the resting membrane skeleton. Dissociation of phosphoadducin releases spectrin from actin, facilitating centralization of spectrin, and leads to the exposure of barbed actin filament ends that may then participate in converting the resting platelet's disc shape into its active form.  相似文献   

14.
Gimm JA  An X  Nunomura W  Mohandas N 《Biochemistry》2002,41(23):7275-7282
Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types.  相似文献   

15.
Fenestration patterns in endothelial cells of rat liver sinusoids   总被引:2,自引:0,他引:2  
Endothelial fenestrae of both zone 1 and zone 3 acinar liver sinusoids have been studied in rats by an interactive analysis of scanning electron microscopical images. Two fenestration patterns have been recognized in the endothelial cells on the basis of local variation in size, distribution and clustering of pores in each acinar zone. Our data indicate that both the number of fenestrae per square micrometer of endothelial surface and the mean diameter of fenestrae are significantly larger in zone 3 than in zone 1. The number of sieve plates is about 1.74 times larger in zone 3 than in zone 1, and the number of fenestrae per plate in zone 3 is nearly twice that in zone 1. Two different classes of fenestrae have been considered: clustered pores, which prevail in zone 3 and have a mean diameter smaller than the other pores, and free pores, which prevail in zone 1 and are bigger.  相似文献   

16.
Hemin-mediated dissociation of erythrocyte membrane skeletal proteins   总被引:2,自引:0,他引:2  
Spectrin tetramers and oligomers in normal erythrocytes are cross-linked by actin and protein 4.1 to form a two-dimensional membrane skeletal network. In the present study, we find that hemin, a breakdown product of hemoglobin, progressively (a) alters the conformation of spectrin as revealed by electron microscope studies and by the decreased resistance of spectrin to proteolytic degradation, (b) alters the conformation of protein 4.1 as revealed by the increased mobility of protein 4.1 on nondenaturing gel electrophoresis, (c) weakens spectrin dimer alpha beta-dimer alpha beta, spectrin alpha-spectrin beta, as well as spectrin-protein 4.1 associations as analyzed by nondenaturing gel electrophoresis, and (d) diminishes the structural stability of erythrocyte membrane skeletons (i.e. Triton-insoluble ghost residues) subjected to mechanical shearing. Since hemin may be liberated from oxidized or unstable mutant hemoglobin under pathological conditions, these hemin-induced effects on spectrin, protein 4.1, and membrane skeletal stability may play a role in the membrane lesion of these erythrocytes.  相似文献   

17.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

18.
S A Morris  M Kaufman 《Blut》1989,59(4):385-389
A method has been developed for the assessment of the number of spectrin dimer units associated with each actin protofilament junction, in the membrane cytoskeletal network (i.e. the degree of branching) of the red cell. Ghosts are first exposed to elevated temperature at low ionic strength to dissociate some 65% of the spectrin tetramers (that link the network junctions) into dimers, without causing their release from the actin filaments. Non-ionic detergent is then added to solubilize the membrane itself with its intrinsic proteins, so as to liberate the cytoskeletal material, and the mixture is immediately examined in the analytical ultracentrifuge. The predominant components observed are isolated junctions (20 S), free spectrin dimers and the residual undissociated cytoskeletal material, with very minor components, probably corresponding to multiple junctions, linked by spectrin tetramers. The junction boundary is homogeneous within the accuracy of measurement and is taken to correspond to a complex containing six spectrin dimers, known to predominate in situ. About 17% of the total network is liberated in this form and 12% as free spectrin dimers. In hereditary spherocytosis both the size of the junction complex (as reflected by its sedimentation coefficient) and the proportion of the complex and of free spectrin liberated are indistinguishable from normal values. We conclude that the reported deficit of spectrin in hereditary spherocytosis is not reflected by a lower degree of branching of the network, and, if the membrane area is not correspondingly reduced, this must mean that the junctions are more widely spaced and the spectrin tetramers therefore more extended. In metabolically depleted cells, in which the cytoskeletal proteins are known to be extensively dephosphorylated, there is no change in the sedimentation pattern and thus no detectable loss of spectrin from the junctions or weakening in the cohesion of the cytoskeletal network.  相似文献   

19.
Wang  Wan-Li  Zheng  Xing-Long  Li  Qing-Shan  Liu  Wen-Yan  Hu  Liang-Shuo  Sha  Huan-Chen  Guo  Kun  Lv  Yi  Wang  Bo 《Molecular and cellular biochemistry》2021,476(1):269-277
Molecular and Cellular Biochemistry - Liver sinusoidal endothelial cells (LSECs) play a key role in the initiation and neoangiogenesis of liver regeneration. We presume that the abnormity of the...  相似文献   

20.
Several types of ionic channels on the outer membrane of the nuclear envelope communicate with the nuclear cisternae. These are distinct from nucleocytoplasmic pathways, the nuclear pores that span the double membrane of the envelope and are the route for RNA and protein traffic in the nucleus. Recent data indicate that the nuclear pores may also function as ion channels. The most probable candidate for nucleocytoplasmic ion flux is a 300-400 pS pathway observed in many nuclear preparations. Morphological and functional studies of nuclear envelope suggest a tight relationship between the large conductance channel and the pore complex. However, there is no direct evidence for gating of the nuclear pore or its ability to open and close as a conventional channel. This study shows that in liver nuclei isolated from newborn mouse, there is a substantial correspondence between the number of pores and the number of channels recorded during patch-clamp. This is not the case for adult nuclei. Although pore density is comparable, some nuclear cytoskeletal components, such as actin and nonmuscle myosin, show a significant increase in the adult preparation. Previous studies demonstrate the presence of these two proteins in association with the pore complex. Here we show that by using actin filament disrupter, we were able to increase the number of active channels in adult isolated nuclei. We suggest that a functional interaction between actin filaments and the nuclear pore complex could regulate nucleocytoplasmic permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号