首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land-breeding marine animals such as penguins, flying seabirds and pinnipeds are important components of marine ecosystems, and their abundance has been used extensively as an indication of ecosystem status and change. Until recently, many efforts to measure and monitor abundance of these species’ groups have focussed on smaller populations and spatial scales, and efforts to account for perception bias and availability bias have been variable and often ad hoc. We describe a suite of new methods, technologies and estimation procedures for cost-effective, large-scale abundance estimation within a general estimation framework and illustrate their application on large Adélie penguin populations in two regions of East Antarctica. The methods include photographic sample counts, automated cameras for collecting availability data, and bootstrap estimation to adjust counts for the sampling fraction, perception bias, and availability bias, and are applicable for a range of land-breeding marine species. The methods will improve our ability to obtain population data over large spatial and population scales within tight logistic, environmental and time constraints. This first application of the methods has given new insights into the biases and uncertainties in abundance estimation for penguins and other land-breeding marine species. We provide guidelines for applying the methods in future surveys.  相似文献   

2.
ABSTRACT Accurately estimating large mammal populations is a difficult challenge because species of interest often occupy vast areas and exhibit low and heterogeneous visibility. Population estimation techniques using aerial surveys and statistical design and analysis methods provide a means for meeting this challenge, yet they have only rarely been validated because wild populations of known size suitable for field tests are rare. Our study presents field validations of a photographic aerial mark-recapture technique that takes advantage of the recognizable natural markings on free-roaming feral horses (Equus caballus) to accurately identify individual animals and groups of animals sighted on multiple occasions. The 3 small populations of feral horses (<400 animals each) in the western United States used in the study were all closely monitored on a weekly basis by local researchers, thus providing test populations of known size. We were able to accurately estimate these population sizes with aerial surveys, despite rugged terrain and dense vegetation that created substantial heterogeneity of sighting probability among horse groups. Our best estimates at the 3 sites were within −6.7%, 2.6%, and −8.6% of known truth (-4.2% mean error, 6.0% mean absolute error). In contrast, we found undercount bias as large as 32% before any statistical corrections. The necessary corrections varied both temporally and spatially, in response to previous sighting history (behavioral response), and by the number of horses in a group. Despite modeling some of the differences in horse-group visibility with sighting covariates, we found substantial residual unmodeled heterogeneity that contributed to underestimation of the true population by as much as 22.7% when we used models that did not fully account for these unmeasured sources. We also found that the cost of the accurate and validated methods presented here is comparable to that of raw count (so called, census) methods commonly employed across feral horse ranges in 10 western states. We believe this technique can assist managers in accurately estimating many feral horse populations and could be applied to other species with sufficiently diverse and distinguishable visible markings.  相似文献   

3.
Abstract: Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1–100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36–42%, and associated standard errors increased 38–55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):808–813; 2008)  相似文献   

4.
We describe a tandem aerial survey method for bottlenose dolphins ( Tursiops truncatus ) that uses two aircraft and independent observer teams to conduct consecutive surveys of the same coastal strip one hour apart. Alternatively, one aircraft with one observer team surveys the same coastal strip twice over several hours. Using mark-recapture analysis, we corrected survey counts for visibility bias resulting from missing dolphin groups at the surface and submerged groups. Dolphin groups were considered "recaptured" when we determined that both observer teams had detected the same group. This tandem method is highly useful for estimating abundance (and visibility bias) for species where population closure may be assumed between flights. We assumed population closure between flights and matched groups using geographic location, group size, and expected travel rates. We derive a new variance estimator of population size which incorporates group-size variability commonly encounteted in cetacean surveys. From six tandem surveys conducted from 1991 to 1994, we estimated the abundance of southern California coastal bottlenose dolphins to be between 78 (95% CI 60-102) and 271 (240-306) animals, with an average of 140 (128-154). Variability in abundance estimates is likely due to seasonal and interannual movement of animals along the California and Baja California coast. Abundance estimates from tandem surveys averaged 53% higher than dolphin counts obtained from individual survey flights, demonstrating the importance of correcting for visibility bias.  相似文献   

5.
From 25 to 30 August 2014 a double‐observer line‐transect survey was conducted over Melville Bay, home to one of two summering populations of narwhal (Monodon monoceros) off West Greenland. A total of 1,932 linear kilometers was surveyed along 33 transects. In addition to using observers, the aircraft was equipped with two oblique cameras to capture a comparable data set. Analysts reviewed the images for narwhal sightings, which were then matched to the observer sightings. The objectives of the study were to determine advantages and disadvantages of the detection capabilities of both methodologies, and to conduct a comparative analysis of population abundance estimates. Correcting for the truncated detection distance of the images (500 m), the image analysts recorded more sightings (62) and a lower mean group size (2.2) compared to aerial observers (36 and 3.5, respectively), resulting in comparable numbers of individuals detected by both platforms (135 vs. 126). The abundance estimate based on the image sightings was 2,536 (CV = 0.51, 95% CI: 1,003–6,406), which was not significantly different from the aerial observers estimate of 2,596 individuals (CV = 0.51; 95% CI: 961–7,008). This study supports the potential of using UAS for marine mammal abundance studies.  相似文献   

6.
  1. Close‐kin mark–recapture (CKMR) is a method for estimating abundance and vital rates from kinship relationships observed in genetic samples. CKMR inference only requires animals to be sampled once (e.g., lethally), potentially widening the scope of population‐level inference relative to traditional monitoring programs.
  2. One assumption of CKMR is that, conditional on individual covariates like age, all animals have an equal probability of being sampled. However, if genetic data are collected opportunistically (e.g., via hunters or fishers), there is potential for spatial variation in sampling probability that can bias CKMR estimators, particularly when genetically related individuals stay in close proximity.
  3. We used individual‐based simulation to investigate consequences of dispersal limitation and spatially biased sampling on performance of naive (nonspatial) CKMR estimators of abundance, fecundity, and adult survival. Population dynamics approximated that of a long‐lived mammal species subject to lethal sampling.
  4. Naive CKMR abundance estimators were relatively unbiased when dispersal was unconstrained (i.e., complete mixing) or when sampling was random or subject to moderate levels of spatial variation. When dispersal was limited, extreme variation in spatial sampling probabilities negatively biased abundance estimates. Reproductive schedules and survival were well estimated, except for survival when adults could emigrate out of the sampled area. Incomplete mixing was readily detected using Kolmogorov–Smirnov tests.
  5. Although CKMR appears promising for estimating abundance and vital rates with opportunistically collected genetic data, care is needed when dispersal limitation is coupled with spatially biased sampling. Fortunately, incomplete mixing is easily detected with adequate sample sizes. In principle, it is possible to devise and fit spatially explicit CKMR models to avoid bias under dispersal limitation, but development of such models necessitates additional complexity (and possibly additional data). We suggest using simulation studies to examine potential bias and precision of proposed modeling approaches prior to implementing a CKMR program.
  相似文献   

7.
Deer (Cervidae) are key components of many ecosystems and estimating deer abundance or density is important to understanding these roles. Many field methods have been used to estimate deer abundance and density, but the factors determining where, when, and why a method was used, and its usefulness, have not been investigated. We systematically reviewed journal articles published during 2004–2018 to evaluate spatio-temporal trends in study objectives, methodologies, and deer abundance and density estimates, and determine how they varied with biophysical and anthropogenic attributes. We also reviewed the precision and bias of deer abundance estimation methods. We found 3,870 deer abundance and density estimates. Most estimates (58%) were for white-tailed deer (Odocoileus virginianus), red deer (Cervus elaphus), and roe deer (Capreolus capreolus). The 6 key methods used to estimate abundance and density were pedestrian sign (track or fecal) counts, pedestrian direct counts, vehicular direct counts, aerial direct counts, motion-sensitive cameras, and harvest data. There were regional differences in the use of these methods, but a general pattern was a temporal shift from using harvest data, pedestrian direct counts, and aerial direct counts to using pedestrian sign counts and motion-sensitive cameras. Only 32% of estimates were accompanied by a measure of precision. The most precise estimates were from vehicular spotlight counts and from capture–recapture analysis of images from motion-sensitive cameras. For aerial direct counts, capture–recapture methods provided the most precise estimates. Bias was robustly assessed in only 16 studies. Most abundance estimates were negatively biased, but capture–recapture methods were the least biased. The usefulness of deer abundance and density estimates would be substantially improved by 1) reporting key methodological details, 2) robustly assessing bias, 3) reporting the precision of estimates, 4) using methods that increase and estimate detection probability, and 5) staying up to date on new methods. The automation of image analysis using machine learning should increase the accuracy and precision of abundance estimates from direct aerial counts (visible and thermal infrared, including from unmanned aerial vehicles [drones]) and motion-sensitive cameras, and substantially reduce the time and cost burdens of manual image analysis.  相似文献   

8.
Management of large mammal populations has often been based on aerial minimum count surveys that are uncorrected for incomplete detection and lack estimates of precision. These limitations can be particularly problematic for Dall's sheep (Ovis dalli dalli) due to the high cost of surveys and variation in detection probability across time and space. The limitations of these methods have been recognized for some time, but previously proposed alternatives for sheep surveys proved to be too costly and logistically unfeasible in most circumstances (Udevitz et al. 2006). We assessed the potential for a combination of distance sampling surveys and a hierarchical modeling approach to provide a more efficient means for estimating Dall's sheep abundance by conducting aerial contour transect surveys over all sheep habitat in Gates of the Arctic National Park and Preserve (GAAR), Alaska in 2009 and 2010. We estimated the population of Dall's sheep was 8,412 (95% CI: 6,517–11,090) and 10,072 (95% CI 8,081–12,520) in 2009 and 2010, respectively. Abundance within the Itkillik Preserve area within GAAR was 1,898 (95% CI: 1,421–2,578) and 1,854 (95% CI: 1,342–2,488) in 2009 and 2010, respectively. Estimates of lamb abundance in 2010 were more than double those of 2009 after correcting for detection bias related to group size, suggesting that the apparent estimate of lambs in the population may be biased in some years depending on the degree of aggregation. Overall, the contour transect surveys were feasible logistically, cost 70–80% less than minimum count surveys, and produced precise estimates of abundance, indicating that the application of these methods could be used effectively to increase the statistical rigor and spatial extent of Dall's sheep abundance surveys throughout Alaska. These methods could be used to improve the assessment of long-term trends in populations and productivity and provide valuable information for harvest management at both local and landscape scales at reduced costs in comparison to traditional minimum count surveys. © 2011 The Wildlife Society.  相似文献   

9.
Obtaining useful estimates of wildlife abundance or density requires thoughtful attention to potential sources of bias and precision, and it is widely understood that addressing incomplete detection is critical to appropriate inference. When the underlying assumptions of sampling approaches are violated, both increased bias and reduced precision of the population estimator may result. Bear (Ursus spp.) populations can be difficult to sample and are often monitored using mark‐recapture distance sampling (MRDS) methods, although obtaining adequate sample sizes can be cost prohibitive. With the goal of improving inference, we examined the underlying methodological assumptions and estimator efficiency of three datasets collected under an MRDS protocol designed specifically for bears. We analyzed these data using MRDS, conventional distance sampling (CDS), and open‐distance sampling approaches to evaluate the apparent bias‐precision tradeoff relative to the assumptions inherent under each approach. We also evaluated the incorporation of informative priors on detection parameters within a Bayesian context. We found that the CDS estimator had low apparent bias and was more efficient than the more complex MRDS estimator. When combined with informative priors on the detection process, precision was increased by >50% compared to the MRDS approach with little apparent bias. In addition, open‐distance sampling models revealed a serious violation of the assumption that all bears were available to be sampled. Inference is directly related to the underlying assumptions of the survey design and the analytical tools employed. We show that for aerial surveys of bears, avoidance of unnecessary model complexity, use of prior information, and the application of open population models can be used to greatly improve estimator performance and simplify field protocols. Although we focused on distance sampling‐based aerial surveys for bears, the general concepts we addressed apply to a variety of wildlife survey contexts.  相似文献   

10.
If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double‐observer models, distance sampling models and combined double‐observer and distance sampling models (known as mark‐recapture‐distance‐sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under‐counted, but not over‐counted. The estimator combines an MRDS model with an N‐mixture model to account for imperfect detection of individuals. The new MRDS‐Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS‐Nmix model to an MRDS model. Abundance estimates generated by the MRDS‐Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re‐allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size.  相似文献   

11.
Technological advances have facilitated collection of vast quantities of photographic data from aerial surveys of marine mammals. However, when it is difficult to distinguish species from a distance, reliable identification from aerial images can often be challenging. This is the case for ice‐associated seals, species for which global climate change has motivated intensive monitoring efforts in recent years. We assess species and age class identification from aerial images of four ice seal species (bearded seals, Erignathus barbatus; ribbon seals, Histriophoca fasciata; ringed seals, Pusa hispida; spotted seals, Phoca largha) in the Bering Sea. We also investigate the specific phenomenological and behavioral traits commonly associated with species identification and observer confidence. We generally found species and age class misidentification occurred at relatively low levels, but only 83% of spotted seals tended to be correctly identified (with 11% mistaken as ribbon seals). We also found certain traits were strong predictors for observed species, age class, or observer confidence. Our findings add to the growing body of evidence that species misidentification is pervasive in passive sampling of animal populations. Even low levels of misidentification have been demonstrated to induce substantial biases in estimators of species distribution and abundance, and it is important that statistical models account for such errors.  相似文献   

12.
ABSTRACT Sightability models have been used to estimate population size of many wildlife species; however, a limitation of these models is an assumption that groups of animals observed and counted during aerial surveys are enumerated completely. Replacing these unknown counts with maximum observed counts, as is typically done, produces population size estimates that are negatively biased. This bias can be substantial depending on the degree of undercounting occurring. We first investigated a method-of-moments estimator of group sizes. We then defined a population size estimator using the method-of-moments estimator of group sizes in place of maximum counts in the traditional sightability models, thereby correcting for bias associated with undercounting group size. We also provide associated equations for calculating the variance of our estimator. This estimator is an improvement over existing sightability model techniques because it significantly reduces bias, and variance estimates provide near nominal confidence interval coverage. The data needed for this estimator can be easily collected and implemented by wildlife managers with a field crew of only 3 individuals and little additional flight or personnel time beyond the normal requirements for developing sightability models.  相似文献   

13.
Ringed seal (Pusa hispida) abundance in Spitsbergen, Svalbard, was estimated during the peak molting period via aerial, digital photographic surveys. A total of 9,145 images, covering 41.7%–100% of the total fast‐ice cover (1,496 km2) of 18 different fjords and bays, were inspected for the presence of ringed seals. A total of 1,708 seals were counted, and when accounting for ice areas that were not covered by images, a total of 3,254 (95% CI: 3,071–3,449) ringed seals were estimated to be hauled out during the surveys. Extensive behavioral data from radio‐tagged ringed seals (collected in a companion study) from one of the highest density fjords during the molting period were used to create a model that predicts the proportion of seals hauled out on any given date, time of day, and under various meteorological conditions. Applying this model to the count data from each fjord, we estimated that a total of 7,585 (95% CI: 6,332–9,085) ringed seals were present in the surveyed area during the peak molting period. Data on interannual variability in ringed seal abundance suggested higher numbers of seals in Van Keulenfjorden in 2002 compared to 2003, while other fjords with very stable ice cover showed no statistical differences. Poor ice conditions in general in 2002 probably resulted in seals from a wide area coming to Van Keulenfjorden (a large fjord with stable ice in 2002). The total estimated number of ringed seals present in the study area at the time of the survey must be regarded as a population index, or at least a minimum estimate for the area, because it does not account for individuals leaving and arriving, which might account for a considerable number of animals. The same situation is likely the case for many other studies reporting aerial census data for ringed seals. To achieve accurate estimates of population sizes from aerial surveys, more extensive knowledge of ringed seal behavior will be required.  相似文献   

14.
Double-Observer Line Transect Methods: Levels of Independence   总被引:1,自引:0,他引:1  
Summary .  Double-observer line transect methods are becoming increasingly widespread, especially for the estimation of marine mammal abundance from aerial and shipboard surveys when detection of animals on the line is uncertain. The resulting data supplement conventional distance sampling data with two-sample mark–recapture data. Like conventional mark–recapture data, these have inherent problems for estimating abundance in the presence of heterogeneity. Unlike conventional mark–recapture methods, line transect methods use knowledge of the distribution of a covariate, which affects detection probability (namely, distance from the transect line) in inference. This knowledge can be used to diagnose unmodeled heterogeneity in the mark–recapture component of the data. By modeling the covariance in detection probabilities with distance, we show how the estimation problem can be formulated in terms of different levels of independence. At one extreme, full independence is assumed, as in the Petersen estimator (which does not use distance data); at the other extreme, independence only occurs in the limit as detection probability tends to one. Between the two extremes, there is a range of models, including those currently in common use, which have intermediate levels of independence. We show how this framework can be used to provide more reliable analysis of double-observer line transect data. We test the methods by simulation, and by analysis of a dataset for which true abundance is known. We illustrate the approach through analysis of minke whale sightings data from the North Sea and adjacent waters.  相似文献   

15.
Species distribution models (SDMs) are often calibrated using presence‐only datasets plagued with environmental sampling bias, which leads to a decrease of model accuracy. In order to compensate for this bias, it has been suggested that background data (or pseudoabsences) should represent the area that has been sampled. However, spatially‐explicit knowledge of sampling effort is rarely available. In multi‐species studies, sampling effort has been inferred following the target‐group (TG) approach, where aggregated occurrence of TG species informs the selection of background data. However, little is known about the species‐ specific response to this type of bias correction. The present study aims at evaluating the impacts of sampling bias and bias correction on SDM performance. To this end, we designed a realistic system of sampling bias and virtual species based on 92 terrestrial mammal species occurring in the Mediterranean basin. We manipulated presence and background data selection to calibrate four SDM types. Unbiased (unbiased presence data) and biased (biased presence data) SDMs were calibrated using randomly distributed background data. We used real and TG‐estimated sampling efforts in background selection to correct for sampling bias in presence data. Overall, environmental sampling bias had a deleterious effect on SDM performance. In addition, bias correction improved model accuracy, and especially when based on spatially‐explicit knowledge of sampling effort. However, our results highlight important species‐specific variations in susceptibility to sampling bias, which were largely explained by range size: widely‐distributed species were most vulnerable to sampling bias and bias correction was even detrimental for narrow‐ranging species. Furthermore, spatial discrepancies in SDM predictions suggest that bias correction effectively replaces an underestimation bias with an overestimation bias, particularly in areas of low sampling intensity. Thus, our results call for a better estimation of sampling effort in multispecies system, and cautions the uninformed and automatic application of TG bias correction.  相似文献   

16.
Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre‐anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of genetic diversity has grown rapidly over the last two decades. Such assessments often yield unexpectedly large estimates of historic abundance. We review the underlying theory and common practices of estimating recent historic abundance from contemporary genetic diversity, and critically evaluate the potential issues at various estimation steps. A general issue of mismatched spatio‐temporal scales between the estimation itself and the objective of the estimation emerged from our assessment; genetic diversity–based estimates of recent historic abundance represent long‐term averages, whereas the objective typically is an estimate of recent abundance for a specific population. Currently, the most promising approach to estimate the difference between recent historic and contemporary abundance requires that genetic data be collected from samples of similar spatial and temporal duration. Novel genome‐enabled inference methods may be able to utilize additional information of dense genome‐wide distributions of markers, such as of identity‐by‐descent tracts, to infer recent historic abundance from contemporary samples only.  相似文献   

17.
Population sizes of ice‐associated pinnipeds have often been estimated with visual or photographic aerial surveys, but these methods require relatively slow speeds and low altitudes, limiting the area they can cover. Recent developments in infrared imagery and its integration with digital photography could allow substantially larger areas to be surveyed and more accurate enumeration of individuals, thereby solving major problems with previous survey methods. We conducted a trial survey in April 2003 to estimate the number of Pacific walruses (Odobenus rosmarus divergens) hauled out on sea ice around St. Lawrence Island, Alaska. The survey used high altitude infrared imagery to detect groups of walruses on strip transects. Low altitude digital photography was used to determine the number of walruses in a sample of detected groups and calibrate the infrared imagery for estimating the total number of walruses. We propose a survey design incorporating this approach with satellite radio telemetry to estimate the proportion of the population in the water and additional low‐level flights to estimate the proportion of the hauled‐out population in groups too small to be detected in the infrared imagery. We believe that this approach offers the potential for obtaining reliable population estimates for walruses and other ice‐associated pinnipeds.  相似文献   

18.
Marginal structural models for time‐fixed treatments fit using inverse‐probability weighted estimating equations are increasingly popular. Nonetheless, the resulting effect estimates are subject to finite‐sample bias when data are sparse, as is typical for large‐sample procedures. Here we propose a semi‐Bayes estimation approach which penalizes or shrinks the estimated model parameters to improve finite‐sample performance. This approach uses simple symmetric data‐augmentation priors. Limited simulation experiments indicate that the proposed approach reduces finite‐sample bias and improves confidence‐interval coverage when the true values lie within the central “hill” of the prior distribution. We illustrate the approach with data from a nonexperimental study of HIV treatments.  相似文献   

19.
Abstract We evaluated double-observer methods for aerial surveys as a means to adjust counts of waterfowl for incomplete detection. We conducted our study in eastern Canada and the northeast United States utilizing 3 aerial-survey crews flying 3 different types of fixed-wing aircraft. We reconciled counts of front- and rear-seat observers immediately following an observation by the rear-seat observer (i.e., on-the-fly reconciliation). We evaluated 6 a priori models containing a combination of several factors thought to influence detection probability including observer, seat position, aircraft type, and group size. We analyzed data for American black ducks (Anas rubripes) and mallards (A. platyrhynchos), which are among the most abundant duck species in this region. The best-supported model for both black ducks and mallards included observer effects. Sample sizes of black ducks were sufficient to estimate observer-specific detection rates for each crew. Estimated detection rates for black ducks were 0.62 (SE = 0.10), 0.63 (SE = 0.06), and 0.74 (SE = 0.07) for pilot-observers, 0.61 (SE = 0.08), 0.62 (SE = 0.06), and 0.81 (SE = 0.07) for other front-seat observers, and 0.43 (SE = 0.05), 0.58 (SE = 0.06), and 0.73 (SE = 0.04) for rear-seat observers. For mallards, sample sizes were adequate to generate stable maximum-likelihood estimates of observer-specific detection rates for only one aerial crew. Estimated observer-specific detection rates for that crew were 0.84 (SE = 0.04) for the pilot-observer, 0.74 (SE = 0.05) for the other front-seat observer, and 0.47 (SE = 0.03) for the rear-seat observer. Estimated observer detection rates were confounded by the position of the seat occupied by an observer, because observers did not switch seats, and by land-cover because vegetation and landform varied among crew areas. Double-observer methods with on-the-fly reconciliation, although not without challenges, offer one viable option to account for detection bias in aerial waterfowl surveys where birds are distributed at low density in remote areas that are inaccessible by ground crews. Double-observer methods, however, estimate only detection rate of animals that are potentially observable given the survey method applied. Auxiliary data and methods must be considered to estimate overall detection rate.  相似文献   

20.
Accurate estimates of animal abundance are essential for guiding effective management, and poor survey data can produce misleading inferences. Aerial surveys are an efficient survey platform, capable of collecting wildlife data across large spatial extents in short timeframes. However, these surveys can yield unreliable data if not carefully executed. Despite a long history of aerial survey use in ecological research, problems common to aerial surveys have not yet been adequately resolved. Through an extensive review of the aerial survey literature over the last 50 years, we evaluated how common problems encountered in the data (including nondetection, counting error, and species misidentification) can manifest, the potential difficulties conferred, and the history of how these challenges have been addressed. Additionally, we used a double‐observer case study focused on waterbird data collected via aerial surveys and an online group (flock) counting quiz to explore the potential extent of each challenge and possible resolutions. We found that nearly three quarters of the aerial survey methodology literature focused on accounting for nondetection errors, while issues of counting error and misidentification were less commonly addressed. Through our case study, we demonstrated how these challenges can prove problematic by detailing the extent and magnitude of potential errors. Using our online quiz, we showed that aerial observers typically undercount group size and that the magnitude of counting errors increases with group size. Our results illustrate how each issue can act to bias inferences, highlighting the importance of considering individual methods for mitigating potential problems separately during survey design and analysis. We synthesized the information gained from our analyses to evaluate strategies for overcoming the challenges of using aerial survey data to estimate wildlife abundance, such as digital data collection methods, pooling species records by family, and ordinal modeling using binned data. Recognizing conditions that can lead to data collection errors and having reasonable solutions for addressing errors can allow researchers to allocate resources effectively to mitigate the most significant challenges for obtaining reliable aerial survey data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号