首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Mutualisms, cooperative interactions between species, generally involve an economic exchange: species exchange commodities that are cheap for them to provide, for ones that cannot be obtained affordably or at all. But these associations can only succeed if effective partners can be enticed to interact. In some mutualisms, partners can actively seek one another out. However, plants, which use mutualists for a wide array of essential life history functions, do not have this option. Instead, natural selection has repeatedly favoured the evolution of rewards – nutritional substances (such as sugar‐rich nectar and fleshy fruit) with which plants attract certain organisms whose feeding activities can then be co‐opted for their own benefit. The trouble with rewards, however, is that they are usually also attractive to organisms that confer no benefits at all. Losing rewards to ‘exploiters’ makes a plant immediately less attractive to the mutualists it requires; if the reward cannot be renewed quickly (or at all), then mutualistic service is precluded entirely. Thus, it is in plants' interests to either restrict rewards to only the most beneficial partners or somehow punish or deter exploiters. Yet, at least in cases where the rewards are highly nutritious, we can expect counter‐selection for exploiter traits that permit them to skirt such control. How, then, can mutualisms persist? In this issue, Orona‐Tamayo et al. ( 2013 ) describe a remarkable adaptation that safeguards one particularly costly reward from nonmutualists. Their study helps to explain the evolutionary success of an iconic interaction and illuminates one way in which mutualism as a whole can persist in the face of exploitation.  相似文献   

2.
3.
Abstract This paper challenges Walter and Paterson's (1994) assertion that the community concept ought to be abandoned because of recent palaeontological evidence pointing to the ‘individualistic’ nature of biological communities. The ‘individualistic’ versus ‘superorganismic’ community concepts might provide good grist for the philosophical mill, but have little practical relevance to contemporary community ecology. Ecologists define communities in terms of current species distributions and interactions, and seek to integrate the roles of both biotic and abiotic factors influencing species distributions. There is no assumption of tight co-evolution among component species; Walter and Paterson confuse ‘organization’ with ‘co-adaptation’. Nor, contrary to the authors’ claims, is there an implicit assumption that all community patterns are caused by competition. For most ecologists, the ‘competition debate’ ended a decade ago. Walter and Paterson's view that competition is rarely, if ever, important in structuring communities is not even held by the main protaganists of the ‘competition is not so important’ school of the 1980s, and is in direct contradiction of the extensive, more recent literature on the subject. It entirely ignores plant ecology. Many of Walter and Paterson's misunderstandings appear to arise from the false premise that explanation of adaptation should be the ultimate goal of any ecological discipline. The authors are hostile to community ecology because, if communities are individualistic, then little light can be shed on species adaptations. Fortunately, most ecologists are not so preoccupied with adaptation.  相似文献   

4.
    
We tested the hypothesis that avian haemosporidian (malaria) parasites specialize on hosts that can be characterized as predictable resources at a site in Amazonian Ecuador. We incorporated host phylogenetic relationship and relative abundance in assessing parasite specialization, and we examined associations between parasite specialization and three host characteristics – abundance, mass and longevity – using quantile regression, phylogenetic logistic regression and t‐tests. Hosts of specialist malaria parasite lineages were on average more abundant than hosts of generalist parasite lineages, but the relationship between host abundance and parasite specialization was not consistent across analyses. We also found support for a positive association between parasite specialization and host longevity, but this also was not consistent across analyses. Nonetheless, our findings suggest that the predictability of a host resource may play a role in the evolution of specialization. However, we also discuss two alternative explanations to the resource predictability hypothesis for specialization: (i) that interspecific interactions among the parasites themselves might constrain some parasites to a specialist strategy, and (ii) that frequent encounters with multiple host species, mediated by blood‐sucking insects, might promote generalization within this system.  相似文献   

5.
6.
    
Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co-occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant–pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant–pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium-enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the “salty nectar hypothesis,” providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant–pollinator interactions.  相似文献   

7.
8.
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.  相似文献   

9.
    
A predator''s functional response determines predator–prey interactions by describing the relationship between the number of prey available and the number eaten. Its shape and parameters fundamentally govern the dynamic equilibrium of predator–prey interactions and their joint abundances. Yet, estimates of these key parameters generally assume stasis in space and time and ignore the potential for local adaptation to alter feeding responses and the stability of trophic dynamics. Here, we evaluate if functional responses diverge among populations of spotted salamander (Ambystoma maculatum) larvae that face antagonistic selection on feeding strategies based on their own risk of predation. Common garden experiments revealed that spotted salamander from ponds with varying predation risks differed in their functional responses, suggesting an evolutionary response. Applying mechanistic equations, we discovered that the combined changes in attack rates, handling times and shape of the functional response enhanced feeding rate in environments with high densities of gape-limited predators. We suggest how these parameter changes could alter community equilibria and other emergent properties of food webs. Community ecologists might often need to consider how local evolution at fine scales alters key relationships in ways that alter local diversity patterns, food web dynamics, resource gradients and community responses to disturbance.  相似文献   

10.
    
Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free‐living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level.  相似文献   

11.
    
Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems – such as communities – through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with – what we believe to be – their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions.  相似文献   

12.
13.
    
The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system – the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T. europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T. europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T. europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T. europaeus flowers. We propose that the interaction could have evolved through maximization of by‐product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.  相似文献   

14.
15.
Bacterial communities play a central role in ecosystems, by regulating biogeochemical fluxes. Therefore, understanding how multiple functional interactions between species face environmental perturbations is a major concern in conservation biology. Because bacteria can use several strategies, including horizontal gene transfers (HGT), to cope with rapidly changing environmental conditions, potential decoupling between function and taxonomy makes the use of a given species as a general bioindicator problematic. The present work is a first step to characterize the impact of a recent polymetallic gradient over the taxonomical networks of five lacustrine bacterial communities. Given that evolutionary convergence represents one of the best illustration of natural selection, we focused on a system composed of two pairs of impacted and clean lakes in order to test whether similar perturbation exerts a comparable impact on the taxonomical networks of independent bacterial communities. First, we showed that similar environmental stress drove parallel structural changes at the taxonomic level on two independent bacterial communities. Second, we showed that a long-term exposure to contaminant gradients drove significant taxonomic structure changes within three interconnected bacterial communities. Thus, this model lake system is relevant to characterize the strategies, namely acclimation and/or adaptation, of bacterial communities facing environmental perturbations, such as metal contamination.  相似文献   

16.
    
Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant–pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant–pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.  相似文献   

17.
    
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

18.
    
BackgroundPlant–pollinator community diversity has been found to decrease under conditions of drought stress; however, research into the temporal dimensions of this phenomenon remains limited. In this study, we investigated the effect of seasonal drought on the temporal niche dynamics of entomophilous flowering plants in a water‐limited ecosystem. We hypothesized that closely related native and exotic plants would tend to share similar life history and that peak flowering events would therefore coincide with phylogenetic clustering in plant communities based on expected phenological responses of plant functional types to limitations in soil moisture availability.LocationGaliano Island, British Columbia, Canada.MethodsCombining methods from pollinator research and phylogenetic community ecology, we tested the influence of environmental filtering over plant community phenology across gradients of landscape disturbance and soil moisture. Floral resource availability and community structure were quantified by counts of flowering shoots. We constructed a robust phylogeny to analyze spatial and temporal variation in phylogenetic patterns across the landscape, testing the significance of the observed patterns against a randomly generated community phylogeny. Phylogenetic metrics were then regressed against factors of disturbance and soil moisture availability.ResultsCritical seasonal fluctuations in floral resources coincided with significant phylogenetic clustering in plant communities, with decreasing plant diversity observed under conditions of increasing drought stress. Exotic plant species in the Asteraceae became increasingly pervasive across the landscape, occupying a late season temporal niche in drought‐stressed environments.Main conclusionResults suggest that environmental filtering is the dominant assembly process structuring the temporal niche of plant communities in this water‐limited ecosystem. Based on these results, and trends seen elsewhere, the overall diversity of plant–pollinator communities may be expected to decline with the increasing drought stress predicted under future climate scenarios.  相似文献   

19.
20.
    
Abstract The fate of seeds during secondary dispersal is largely unknown for most species in most ecosystems. This paper deals with sources of seed output of Prosopis flexuosa D.C. (Fabaceae, Mimosoideae) from the surface soil seed‐bank. Prosopis flexuosa is the main tree species in the central Monte Desert, Argentina. In spite of occasional high fruit production, P. flexuosa seeds are not usually found in the soil, suggesting that this species does not form a persistent soil seed‐bank. The magnitude of removal by animals and germination of P. flexuosa seeds was experimentally analysed during the first stage of secondary dispersal (early autumn). The proportion of seeds removed by granivores was assessed by offering different types of diaspores: free seeds, seeds inside intact endocarps, pod segments consisting of 2–3 seeds, and seeds from faeces of one herbivorous hystricognath rodent, the mara (Dolichotis patagonum). The proportion of seeds lost through germination was measured for seeds inside intact endocarps, seeds inside artificially broken endocarps, and free seeds. Removal by ants and mammals is the main factor limiting the formation of a persistent soil seed‐bank of P. flexuosa: >90% of the offered seeds were removed within 24 h of exposure to granivores in three of four treatments. Seeds from the faeces of maras, on the other hand, were less vulnerable to granivory than were other types of diaspores. These results suggest that herbivory might be an indirect mechanism promoting seed longevity in the soil (and likely germination) by discouraging granivore attack. On the other hand, germination did not seem to have an important postdispersal impact on the persistence of P. flexuosa seeds in the soil. Both direct and indirect interactions between vertebrate herbivores and plants may foster P. flexuosa's seed germination in some South American arid zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号