首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of mutualistic networks provides clues to processes shaping biodiversity [1-10]. Among them, interaction intimacy, the degree of biological association between partners, leads to differences in specialization patterns [4, 11] and might affect network organization [12]. Here, we investigated potential consequences of interaction intimacy for the structure and coevolution of mutualistic networks. From observed processes of selection on mutualistic interactions, it is expected that symbiotic interactions (high-interaction intimacy) will form species-poor networks characterized by compartmentalization [12, 13], whereas nonsymbiotic interactions (low intimacy) will lead to species-rich, nested networks in which there is a core of generalists and specialists often interact with generalists [3, 5, 7, 12, 14]. We demonstrated an association between interaction intimacy and structure in 19 ant-plant mutualistic networks. Through numerical simulations, we found that network structure of different forms of mutualism affects evolutionary change in distinct ways. Change in one species affects primarily one mutualistic partner in symbiotic interactions but might affect multiple partners in nonsymbiotic interactions. We hypothesize that coevolution in symbiotic interactions is characterized by frequent reciprocal changes between few partners, but coevolution in nonsymbiotic networks might show rare bursts of changes in which many species respond to evolutionary changes in a single species.  相似文献   

2.
A central problem in the study of species interactions is to understand the underlying ecological and evolutionary mechanisms that shape and are shaped by trait evolution in interacting assemblages. The patterns of interaction among species (i.e. network structure) provide the pathways for evolution and coevolution, which are modulated by how traits affect individual fitness (i.e. functional mechanisms). Functional mechanisms, in turn, also affect the likelihood of an ecological interaction, shaping the structure of interaction networks. Here, we build adaptive network models to explore the potential role of coevolution by two functional mechanisms, trait matching and exploitation barrier, in driving trait evolution and the structure of interaction networks. We use these models to explore how different scenarios of coevolution and functional mechanisms reproduce the empirical network patterns observed in antagonistic and mutualistic interactions and affect trait evolution. Scenarios assuming coevolutionary feedback with a strong effect of functional mechanism better reproduce the empirical structure of networks. Antagonistic and mutualistic networks, however, are better explained by different functional mechanisms and the structure of antagonisms is better reproduced than that of mutualisms. Scenarios assuming coevolution by strong trait matching between interacting partners better explain the structure of antagonistic networks, whereas those assuming strong barrier effects better reproduce the structure of mutualistic networks. The dynamics resulting from the feedback between strong functional mechanisms and coevolution favor the stability of antagonisms and mutualisms. Selection favoring trait matching reduces temporal trait fluctuation and the magnitude of arms races in antagonisms, whereas selection due to exploitation barriers reduces temporal trait fluctuations in mutualisms. Our results indicate that coevolutionary models better reproduce the network structure of antagonisms than those of mutualisms and that different functional mechanisms may favor the persistence of antagonistic and mutualistic interacting assemblages.  相似文献   

3.
Coevolution (reciprocal evolutionary change in interacting species) is posited as a major mechanism that creates new species. A challenge has been to understand how coevolution has shaped the patterns of relatedness of interacting species and the traits involved in the interaction. Ongoing advances in the field of molecular phylogenetics have opened exciting avenues to examine both ancient and recent coevolutionary processes. Using plant–insect interactions as examples, I review the predictions of a number of coevolutionary models.  相似文献   

4.
KD Heath  KE McGhee 《PloS one》2012,7(7):e41567
Third party species, which interact with one or both partners of a pairwise species interaction, can shift the ecological costs and the evolutionary trajectory of the focal interaction. Shared genes that mediate a host's interactions with multiple partners have the potential to generate evolutionary constraints, making multi-player interactions critical to our understanding of the evolution of key interaction traits. Using a field quantitative genetics approach, we studied phenotypic and genetic correlations among legume traits for rhizobium and herbivore interactions in two light environments. Shifts in plant biomass allocation mediated negative phenotypic correlations between symbiotic nodule number and herbivory in the field, whereas positive genetic covariances suggested shared genetic pathways between nodulation and herbivory response. Trait variance-covariance (G) matrices were not equal in sun and shade, but nevertheless responses to independent and correlated selection are expected to be similar in both environments. Interactions between plants and aboveground antagonists might alter the evolutionary potential of traits mediating belowground mutualisms (and vice versa). Thus our understanding of legume-rhizobium genetics and coevolution may be incomplete without a grasp of how these networks overlap with other plant interactions.  相似文献   

5.
The impact of coevolutionary interaction between species on adaptive radiation processes is analysed with reference to pollination biology case studies. Occasional colonization of archipelagos can bring together coevolving partners and cause coradiation of the colonizing species, e.g. the drepanidids and the lobelioids on Hawaii. Permanent reciprocal selective pressure between pairs of coevolving species can lead to a coevolutionary race and rapid evolutionary change. This is exemplified by spurred flowers and long-tongued flower-visitors. The geographic patterning of diffuse coevolution systems can lead to dramatic changes in species interactions. In different populations, interaction between pollinating and seed-parasitizing Greya moths and their host plants varies from mutualism to commensalism and antagonism, depending on the presence of copollinators. Asymmetrical coevolution between angiosperms and oligolectic flower-visitors may facilitate rapid reproductive isolation of populations following a food-plant switch, if the oligoleges use their specific food plants as the rendezvous sites. Diffuse coevolution between angiosperm species and pollinating insects may cause frequent convergent evolution of floral traits such as nectar reward instead of pollen reward, floral guides, zygomorphic flowers, or mimicry of pollen signals, since the multiple plant species experience similar selective pressures via the coevolving partners. Patterns of angiosperm adaptive radiation are highlighted in the context of coevolution with pollinators.  相似文献   

6.
A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.  相似文献   

7.
Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.  相似文献   

8.
Population structures largely affect higher levels of organization (community structure, ecosystem functioning), especially when involving ontogenetic changes in habitat or diet. Along life cycles, partners and interaction type may change: for instance Lepidopterans are herbivores as larvae and pollinators as adults. To understand variations in diet niche from larvae to adults, we model a community of two plant species and one stage‐structured insect species consuming plants as juvenile and pollinating them as adult. We model the coevolution of juvenile and adult diet specialization using adaptive dynamics to investigate when one should expect niche partitioning or niche overlap among life stages. We consider ecological and evolutionary implications for the coexistence of species. As predicted based on indirect effects among stages, we find that juvenile diet evolution increases niche overlap and favours the coexistence of plants, while the evolution of the adult diet decreases niche overlap and reduces plant coexistence, because of positive feedbacks emerging from the mutualistic interaction.  相似文献   

9.
Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.  相似文献   

10.
尚元正  刘彦平  王瑞武  张锋 《生态学报》2024,44(13):5621-5628
互惠共生指双方物种都能通过对方增加适合度的种间关系。榕树与榕小蜂的传粉关系是自然界中典型的互惠共生系统,这种互惠关系发生在榕果中,也就是榕果是种间作用的场所,榕小蜂在其中传粉和产卵。由此,可以把榕果看作榕小蜂的生境斑块,利用集合种群理论框架构建榕树与榕小蜂互惠关系的动力学模型,研究这个互惠系统的稳定性和续存条件。由于这里的生境斑块(榕果)的动态变化性(榕果产生和掉落),模型不同于传统的生境斑块固定不变的集合种群模型,增加了描述生境动态的维度。模型表明:(1)榕果产生率足够大(大于一个阈值)是榕树与榕小蜂互惠系统能够续存的必要条件;(2)榕树和榕小蜂互惠系统存在双稳态现象(Allee效应),这个互惠系统续存需要种群大小超过一个阈值,换言之,种群大小低于这个阈值时,系统必然灭绝;(3)榕果产生率增加使榕小蜂种群增加,但不会影响未被占据的榕果数量。我们的模型不但可用来研究榕树与榕小蜂互惠系统的动力学性质,而且也是集合种群理论斑块动态化的发展。  相似文献   

11.
Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co‐evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co‐phylogenetic congruence of plant–animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower‐visiting insects than plants. Phylogenetic signal and overall co‐phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co‐phylogenetic correspondence in plant–pollinator interactions could be associated with less reliable mutualism and erratic co‐evolutionary change.  相似文献   

12.
Viruses are being redefined as more than just pathogens. They are also critical symbiotic partners in the health of their hosts. In some cases, viruses have fused with their hosts in symbiogenetic relationships. Mutualistic interactions are found in plant, insect, and mammalian viruses, as well as with eukaryotic and prokaryotic microbes, and some interactions involve multiple players of the holobiont. With increased virus discovery, more mutualistic interactions are being described and more will undoubtedly be discovered.  相似文献   

13.
Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator-prey and host-parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters.  相似文献   

14.
Plant communities vary tremendously in terms of productivity, species diversity, and genetic diversity within species. This vegetation heterogeneity can impact both the likelihood and strength of interactions between plants and insect herbivores. Because altering plant-herbivore interactions will likely impact the fitness of both partners, these ecological effects also have evolutionary consequences. We review several hypothesized and well-documented mechanisms whereby variation in the plant community alters the plant-herbivore interaction, discuss potential evolutionary outcomes of each of these ecological effects, and conclude by highlighting several avenues for future research. The underlying theme of this review is that the neighborhood of plants is an important determinant of insect attack, and this results in feedback effects on the plant community. Because plants exert selection on herbivore traits and, reciprocally, herbivores exert selection on plant-defense traits, variation in the plant community likely contributes to spatial and temporal variation in both plant and insect traits, which could influence macroevolutionary patterns.  相似文献   

15.
The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen‐fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype‐by‐genotype variation in patterns of plant growth. A relatively large component of this variation (21–28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia‐rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies.  相似文献   

16.
Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.  相似文献   

17.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

18.
There is an ongoing debate on whether species' traits or neutrality generate recurrent patterns of mutualistic networks. Although there have been recent advances on the issue, many studies neglect the seasonal dynamics of these drivers. In this study, we investigated how pervasive are the drivers (i.e. species’ size, phenological overlap and species relative abundance) of the frequency of pairwise interactions and the aggregate metrics of seasonal seed dispersal networks in a semideciduous forest from the savannahs of Southeastern Brazil. We used a likelihood approach and built probability matrices based on different drivers to compare how they fit in the frequency and structure of the seasonal observed networks. We found that in both seasons trait-based processes, especially phenological overlap between species, best predicted the frequency of pairwise interactions. However, species relative abundances performed better than species traits in explaining most of aggregate network metrics in both seasons, except for the interaction evenness. These findings suggest that ecological and evolutionary processes are seasonally pervasive and determine the ability of species to interact with their partners. Besides, the general structure of the seasonal networks is less sensitive to species traits and its drivers remain seasonally constant. We conclude that our ability to understand the complexity of plant-frugivore interactions depends on assessing the contribution of species traits and their relative abundances to the structure of seasonal-detailed networks.  相似文献   

19.
We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.  相似文献   

20.
The romantic perception of plant–animal mutualisms as a cooperative endeavour has been shattered in the last decades. While the classic theory of plant–pollinator coevolution assumed that partner coevolution is largely mutualistic, an increasing appreciation of the inherent conflict of interests between such partners has led to the realization that genes that confer a reproductive advantage to plants may have negative effects on their pollinators (and vice versa), giving rise to an apparent paradox: that antagonistic processes may drive coevolution among mutualistic partners. Under this new paradigm, mutualistic partners are bound by mutual interest but shaped by “selfish” antagonistic processes. Exploitation barriers mediated by resource competition among pollinators are a key element of this paradigm. Exploitation barriers involve traits such as tubular corollas, red flowers, toxic or deterrent rewards, and attractants of floral predators. Exploitation barriers result in resource partitioning, increasing floral fidelity of favoured pollinators and therefore plant fitness; but they often entail a physiological, behavioural or developmental cost for such favoured pollinators. Resource partitioning mediated by exploitation barriers is a very powerful driver of floral diversification, robust to variation in pollinator assemblages; hence, it may contribute to elucidating the occurrence of co-evolutionary changes in multi-species contexts. Exploitation barriers provide also a mechanistic basis for trait-based modelling of interaction networks, and represent a reason for caution in assuming fixed interaction identity or strength when modelling such networks (e.g. in rarefaction procedures used to estimate secondary extinctions). We propose to replace the misleading metaphor that depicts flowers and pollinators as cooperative partners by a metaphor in which plants and pollinator are traders, seeking to obtain different services from each other in complete disregard for the benefit of their mutualistic partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号