首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monotypic genus Auxenochlorella with its type species A. protothecoides is so far only known from specific habitats such as the sap of several tree species. Several varieties were described according to physiological performances in culture on different organic substrates. However, two strains designated as Auxenochlorella were isolated from other habitats (an endosymbiont of Hydra viridis and an aquatic strain from an acidic volcano stream). We studied those isolates and compared them with six strains of Auxenochlorella belonging to different varieties. The integrative approach used in this study revealed that all strains showed similar morphology but differed in their SSU and ITS rDNA sequences. The Hydra endosymbiont formed a sister taxon to A. protothecoides, which included the varieties protothecoides, galactophila, and communis. The variety acidicola is not closely related to Auxenochlorella and represented its own lineage within the Trebouxiophyceae. In view of these results, we propose a new species of Auxenochlorella, A. symbiontica, for the Hydra symbiont, and a new genus Pumiliosphaera, with its type species, P. acidophila, for acidophilic strain. These results are supported by several compensatory base changes in the conserved region of ITS‐2 and ITS‐2 DNA barcodes.  相似文献   

2.
The genera Elliptochloris and Pseudochlorella were erected for Chlorella‐like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS‐2 Barcodes using the ITS‐2/CBC approach.  相似文献   

3.
The subfamily Crucigenioideae was traditionally classified within the well‐characterized family Scenedesmaceae (Chlorophyceae). Several morpho‐logical revisions and questionable taxonomic changes hampered the correct classification of crucigenoid species resulting in a high number of synonymous genera. We used a molecular approach to determine the phylogenetic position of several Tetrastrum and Crucigenia species. The molecular results were correlated with morphological and ontogenetic characters. Phylogenetic analyses of the SSU rDNA gene resolved the position of Tetrastrum heteracanthum and T. staurogeniaeforme as a new lineage within the Oocystis clade of the Trebouxiophyceae. Crucigenia tetrapedia, T. triangulare, T. punctatum, and T. komarekii were shown to be closely related to Botryococcus (Trebouxiophyceae) and were transferred to Lemmer‐mannia. Crucigenia lauterbornii was not closely related to the other Crucigenia strains, but was recovered within the Chlorella clade of the Trebouxiophyceae.  相似文献   

4.
5.
Members of the Watanabea clade of Trebouxiophyceae are genetically diverse and widely distributed in all kinds of habitats, especially in most terrestrial habitats. Ten new strains of terrestrial algae isolated from the tropical rainforest in China, and four published strains were investigated in this study. Morphological observation and molecular phylogenetic analyses based on the 18S, ITS, rbcL, and tufA genes were used to identify the new strains. Four previously described species were reinvestigated to supplement molecular data and autospores’ morphological photographs. The phylogenetic analyses based on 18S only, the concatenated dataset of 18S and ITS, as well as the concatenated dataset of rbcL and tufA, showed the same phylogenetic positions and relationships of these new strains. According to the phylogenetic analysis and morphological comparisons results, we described these 10 strains as four new members within the Watanabea clade, Polulichloris yunnanensis sp. nov., Polulichloris ovale sp. nov., Massjukichlorella orientale sp. nov., and Massjukichlorella minus sp. nov., and two known species, Massjukichlorella epiphytica, and Mysteriochloris nanningensis. Additionally, we provide strong evidence proving that Phyllosiphon, Mysteriochloris, Polulichloris, and Desertella all reproduce through unequal sized autospores.  相似文献   

6.
Gonyostmum semen is a freshwater raphidophyte that has increased in occurrence and abundance in several countries in northern Europe since the 1980s. More recently, the species has expanded rapidly also in north‐eastern Europe, and it is frequently referred to as invasive. To better understand the species history, we have explored the phylogeography of G. semen using strains from northern Europe, United States, and Japan. Three regions of the ribosomal RNA gene (small subunit [SSU], internal transcribed spacer [ITS] and large subunit [LSU]) and one mitochondrial DNA marker (cox1) were analyzed. The SSU and partial LSU sequences were identical in all strains, confirming that they belong to the same species. The ITS region differentiated the American from the other strains, but showed high intra‐strain variability. In contrast, the mitochondrial marker cox1 showed distinct differences between the European, American, and Japanese strains. Interestingly, only one cox1 haplotype was detected in European strains. The overall low diversity and weak geographic structure within northern European strains supported the hypothesis of a recent invasion of new lakes by G. semen. Our data also show that the invasive northern European lineage is genetically distinct from the lineages from the other continents. Finally, we concluded that the mitochondrial cox1 was the most useful marker in determining large‐scale biogeographic patterns in this species.  相似文献   

7.
Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra‐organism genetic variation. However, information about intra‐ vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra‐isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12–40 clones per isolate. Intra‐isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut‐off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next‐generation sequencing; and its ease of amplification in single‐step PCR.  相似文献   

8.
Wittrockiella is a small genus of filamentous green algae that occurs in habitats with reduced or fluctuating salinities. Many aspects of the basic biology of these algae are still unknown and the phylogenetic relationships within the genus have not been fully explored. We provide a phylogeny based on three ribosomal markers (ITS, LSU, and SSU rDNA) of the genus, including broad intraspecific sampling for W. lyallii and W. salina, recommendations for the use of existing names are made, and highlight aspects of their physiology and life cycle. Molecular data indicate that there are five species of Wittrockiella. Two new species, W. australis and W. zosterae, are described, both are endophytes. Although W. lyallii and W. salina can be identified morphologically, there are no diagnostic morphological characters to distinguish between W. amphibia, W. australis, and W. zosterae. A range of low molecular weight carbohydrates were analyzed but proved to not be taxonomically informative. The distribution range of W. salina is extended to the Northern Hemisphere as this species has been found in brackish lakes in Japan. Furthermore, it is shown that there are no grounds to recognize W. salina var. kraftii, which was described as an endemic variety from a freshwater habitat on Lord Howe Island, Australia. Culture experiments indicate that W. australis has a preference for growth in lower salinities over full seawater. For W. amphibia and W. zosterae, sexual reproduction is documented, and the split of these species is possibly attributable to polyploidization.  相似文献   

9.
10.
Two basidiomycete‐specific primers ITS1‐F and ITS4‐B were used in identification of the genus Puccinia. The primers showed good specificity for the genus with an 816‐bp product that was amplified exclusively. Twenty sequences of internal transcribed spacer (ITS) regions of Puccinia helianthi isolates from China remain unchanged. The whole ITS length (including ITS1 sequence 194 bp, 5.8S rRNA gene 156 bp, ITS2 sequence 206 bp) was 556 bp. By comparing the aligned ITS sequences of several Puccinia isolates from China, Spain and the United States, ITS homogeneity among these sunflower rust isolates was >99%. Genetic homology and phylogeny of P. helianthi with other Puccinia spp. was investigated. Nineteen sequences of rDNA ITS1 and ITS2 were determined and used as phylogenetic markers. Phylogenetic analysis of ITS regions showed that Puccinia spp. of sunflower was clustered in one clade with P. komarovii and P. violae, divergent from Puccinia spp. of Chrysanthemum, P. tenaceti of tansy (Tanacetum vulgare) and Puccina spp. of big sagebrush (Artemisia tridentate) indicating sunflower rust had distant phylogenetic relationships with other Compositae rusts. With the specified primers SR‐1 and SR‐2, either from purified urediniospores or symptomless (but infected) sunflower leaves could be examined specifically. Therefore, results of this study help in detection and polygenetic study of rust fungi occurring on sunflower.  相似文献   

11.
The genus Pseudo‐nitzschia contains potentially toxic species of problematic taxonomy, making it one of the most intensively studied diatom genera. The study of 35 clonal strains isolated from the Bilbao estuary, an area that experiences recurrent blooms of Pseudo‐nitzschia, revealed the presence of two new species, P. abrensis and P. plurisecta, differing from their congeners in both morphology and gene sequence. The morphological features were analyzed by LM and EM, whereas molecular analyses were based on the internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA. P. plurisecta appears closely related to P. cuspidata/P. pseudodelicatissima in the phylogenetic tree, whereas P. abrensis forms a moderately supported clade with P. heimii/P. subpacifica and P. caciantha/P. circumpora. Comparison of the secondary structure of ITS2 regions reveals marked differences in the most highly conserved regions among related taxa. Morphologically, the new species differ from their closest congeners in the arrangement of the poroid sectors and the density of valve striae and fibulae. The two species share similar pigment composition, and belong to the group of Pseudo‐nitzschia species containing only chlorophyll c2 and c3.  相似文献   

12.
13.
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

14.
Many freshwater protists harbor unicellular green algae within their cells and these host‐symbiont relationships slowly are becoming better understood. Recently, we reported that several ciliate species shared a single species of symbiotic algae. Nonetheless, the algae from different host ciliates were each distinguishable by their different genotypes, and these host‐algal genotype combinations remained unchanged throughout a 15‐month period of sampling from natural populations. The same algal species had been reported as the shared symbiont of several ciliates from a remote lake. Consequently, this alga appears to play a key role in ciliate‐algae symbioses. In the present study, we successfully isolated the algae from ciliate cells and established unialgal cultures. This species is herein named Brandtia ciliaticola gen. et sp. nov. and has typical ‘Chlorella‐like’ morphology, being a spherical autosporic coccoid with a single chloroplast containing a pyrenoid. The alga belongs to the Chlorella‐clade in Chlorellaceae (Trebouxiophyceae), but it is not strongly connected to any of the other genera in this group. In addition to this phylogenetic distinctiveness, a unique compensatory base change in the SSU rRNA gene is decisive in distinguishing this genus. Sequences of SSU‐ITS (internal transcribed spacer) rDNA for each isolate were compared to those obtained previously from the same host ciliate. Consistent algal genotypes were recovered from each host, which strongly suggests that B. ciliaticola has established a persistent symbiosis in each ciliate species.  相似文献   

15.
We investigate the cyst‐theca relationship of Impagidinium caspienense. Through an incubation experiment, we succeeded in examining the motile stage. Additional molecular analysis of single‐cyst PCR (LSU and SSU rDNA) reveal that the cyst is related to the species Gonyaulax baltica Ellegaard et al. ( 2002 ). The ability of this species to belong to two types of cyst‐based genera (spiniferate and impagidinioid) suggests that environmental (particularly salinity) and not genetic factors explain the formation of both morphotypes by G. baltica, which provides evidence for heterospory in this species. The affiliation to G. baltica demonstrates that I. caspienense is not endemic to the Caspian Sea. The phylogenetic position of several other gonyaulacoid species is also documented: Impagidinium pallidum, Ataxiodinium choane, Pyxidinopsis psilata, Spiniferites belerius, and Spiniferites ramosus. The LSU and SSU rDNA based phylogenies suggest that the genera Impagidinium and Spiniferites are not monophyletic, and that P. psilata and A. choane are close to Gonyaulax verior and Gonyaulax polygramma, respectively. In addition, this study accentuates the importance of cyst morphology in the classification of the Gonyaulacales.  相似文献   

16.
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1–5.8S–ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and a major accessory pigment peridinin, which are four key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3–10.9 μm long and 5.1–10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4–0.6 × cell length while in other known Gymnodinium species it is less than 0.3 × cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1–5.8S–ITS2, and LSU rDNA region differed by 1.5–3.8%, 6.0–17.4%, and 9.1–17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum, etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp.  相似文献   

17.
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub‐Unit (SSU) rDNA, partial Large Sub‐Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1‐5.8S‐ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU‐ITS‐LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida‐Cuba, (C1) India, and (C2) Australia.  相似文献   

18.
Seventy‐five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo‐nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS‐1 and ITS‐2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi‐compensatory base changes (HCBCs) in paired positions of the ITS‐2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co‐occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region.  相似文献   

19.
Blackberry anthracnose, caused by Colletotrichum spp., is an important disease of cultivated blackberry in the world. In Colombia, it is the number one limiting factor for commercial production. This study was conducted to determine the species of Colletotrichum infecting blackberry plants as well as the organ distribution, pathogenicity and response to benomyl of the isolated strains. Sixty isolates from stems (n = 20), thorns (n = 20) and inflorescences (n = 20) were identified as Colletotrichum acutatum and Colletotrichum gloeosporioides by a species‐specific polymerase chain reaction (PCR). Both Colletotrichum species were found in the same plant but on different organs. Colletotrichum gloeosporioides species predominated in thorn lesions (n = 16) and C. acutatum in stems (n = 15) and inflorescence (n = 15). Pathogenicity assays on detached blackberry organs demonstrated differences between the two species with an average period of lesion development of 8.7 days for C. gloeosporioides and 10.3 days for C. acutatum. Wound inoculated organs had 90% disease development compared to 17.5% in non‐wounded. All C. acutatum isolates (n = 34) were benomyl tolerant, whereas C. gloeosporioides isolates (n = 26) were 30.7% sensitive and 69.2% moderately tolerant. Phylogenetic analysis with ITS sequences of a subset of 18 strains showed that strains classified as Cgloeosporioides had 100% identity to Colletotrichum kahawae, which belongs to the C. gloeosporioides species complex, whereas C. acutatum strains clustered into two different groups, with high similarity to the A2 and the A4 molecular groups. These data demonstrate for the first time the differential distribution of both species complexes in blackberry plant organs and further clarifies the taxonomy of the strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号