首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators'' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators’ suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators’ indirect effects.  相似文献   

2.
There is global interest in restoring populations of apex predators, both to conserve them and to harness their ecological services. In Australia, reintroduction of dingoes (Canis dingo) has been proposed to help restore degraded rangelands. This proposal is based on theories and the results of studies suggesting that dingoes can suppress populations of prey (especially medium‐ and large‐sized herbivores) and invasive predators such as red foxes (Vulpes vulpes) and feral cats (Felis catus) that prey on threatened native species. However, the idea of dingo reintroduction has met opposition, especially from scientists who query the dingo's positive effects for some species or in some environments. Here, we ask ‘what is a feasible experimental design for assessing the role of dingoes in ecological restoration?’ We outline and propose a dingo reintroduction experiment—one that draws upon the existing dingo‐proof fence—and identify an area suitable for this (Sturt National Park, western New South Wales). Although challenging, this initiative would test whether dingoes can help restore Australia's rangeland biodiversity, and potentially provide proof‐of‐concept for apex predator reintroductions globally.  相似文献   

3.
The exploitation ecosystems hypothesis (EEH) makes predictions about trophic interactions along gradients of primary productivity. The EEH has been shown to apply to a wide range of terrestrial environments but its applicability to arid environments has received little attention. One reason for this is that arid environments may not satisfy the assumptions of the EEH because dearth of water may limit biological activity in both temporal and spatial contexts. The EEH predicts that herbivore biomass should increase linearly with primary productivity in the absence of predators; but when predators are present herbivore biomass will remain relatively constant due to top down regulation. We tested this prediction in an arid environment using rainfall as a proxy of primary productivity and an index of the abundance of the dominant herbivores (kangaroos Macropus spp.). We compared an index of kangaroo abundance at 18 areas situated along a gradient of mean annual rainfall in areas where a top predator (the dingo Canis lupus dingo) was rare and common. We also explored the relationship between the density of artificial water points (AWPs) and kangaroo abundance to investigate if the resource subsidy provided by AWPs allows kangaroos to persist in high numbers. Consistent with the EEH, kangaroo abundance showed a weak relationship with mean annual rainfall in the presence of dingoes but increased with increasing annual rainfall in the absence of dingoes. The density of AWPs was a poor predictor of kangaroo abundance. Our analysis of macro‐ecological patterns suggests that kangaroo populations are primarily top down regulated in the presence of dingoes, but are bottom up regulated in the absence of dingoes. Our findings provide evidence that top down regulation can prevail over bottom up regulation of herbivore populations in arid ecosystems and highlights the usefulness of the EEH as a predictor of macro‐ecological patterns of species abundance.  相似文献   

4.
Top‐order predators often have positive effects on biological diversity owing to their key functional roles in regulating trophic cascades and other ecological processes. Their loss has been identified as a major factor contributing to the decline of biodiversity in both aquatic and terrestrial systems. Consequently, restoring and maintaining the ecological function of top predators is a critical global imperative. Here we review studies of the ecological effects of the dingo Canis lupus dingo, Australia's largest land predator, using this as a case study to explore the influence of a top predator on biodiversity at a continental scale. The dingo was introduced to Australia by people at least 3500 years ago and has an ambiguous status owing to its brief history on the continent, its adverse impacts on livestock production and its role as an ecosystem architect. A large body of research now indicates that dingoes regulate ecological cascades, particularly in arid Australia, and that the removal of dingoes results in an increase in the abundances and impacts of herbivores and invasive mesopredators, most notably the red fox Vulpes vulpes. The loss of dingoes has been linked to widespread losses of small and medium‐sized native mammals, the depletion of plant biomass due to the effects of irrupting herbivore populations and increased predation rates by red foxes. We outline a suite of conceptual models to describe the effects of dingoes on vertebrate populations across different Australian environments. Finally, we discuss key issues that require consideration or warrant research before the ecological effects of dingoes can be incorporated formally into biodiversity conservation programs.  相似文献   

5.
Large carnivores can play a pivotal role in maintaining healthy, balanced ecosystems. By suppressing the abundances and hence impacts of herbivores and smaller predators, top predators can indirectly benefit the species consumed by herbivores and smaller predators. Restoring and maintaining the ecosystem services that large carnivores provide has been identified as a critical step required to sustain biodiversity and maintain functional, resilient ecosystems. Recent research has shown that Australia's largest terrestrial predator, the Dingo (Canis lupus dingo), has strong effects on ecosystems in arid Australia and that these effects are beneficial for the conservation of small mammals and vegetation. Similarly, there is evidence from south‐eastern Australia that dingoes suppress the abundance of macropods and red Fox (Vulpes vulpes). It is likely that dingoes in south‐eastern Australia also generate strong indirect effects on the prey of foxes and macropods, as has been observed in the more arid parts of the continent. These direct and indirect effects of dingoes have the potential to be harnessed as passive tools to assist biodiversity conservation through the maintenance of ecologically functional dingo populations. However, research is required to better understand dingoes' indirect effects on ecosystems and the development of dingo management strategies that allow for both the preservation of dingoes and protection of livestock.  相似文献   

6.
Aim We examined evidence for the mesopredator release hypothesis at a subcontinental scale by investigating the relationship between indices of abundance of the dingo Canis lupus dingo (top‐order predator) and the invasive red fox Vulpes vulpes (mesopredator) in three large regions across mainland Australia. The red fox is known to be one of the major threats to the persistence of small and medium‐sized native vertebrates across the continent. Location Australia. Methods Indices of abundance were calculated from three independently collected datasets derived from bounty returns and field surveys. Data were analysed using univariate parametric, semi‐parametric and nonparametric techniques. Results Predator abundance indices did not conform to a normal distribution and the relationships between dingo and fox abundance indices were not well described by linear functions. Semi‐parametric and nonparametric techniques revealed consistently negative associations between indices of dingo and fox abundance. Main conclusions The results provide evidence that mesopredator suppression by a top predator can be exerted at very large geographical scales and suggest that relationships between the abundances of top predators and mesopredators are not linear. Our results have broad implications for the management of canid predators. First, they suggest that dingoes function ecologically to reduce the activity or abundance of red foxes and thus are likely to dampen the predatory impacts of foxes. More generally, they provide support for the notion that the mesopredator‐suppressive effects of top predators could be incorporated into broad‐scale biodiversity conservation programmes in many parts of the world by actively maintaining populations of top predators or restoring them in areas where they are now rare. Determining the population densities at which the interactions of top predators become ecologically effective will be a critical goal for conservation managers who aim to maintain or restore ecosystems using the ecological interactions of top predators.  相似文献   

7.
We investigated how long‐term suppression of populations of a top predator, the dingo Canis dingo, affected composition of sympatric avifauna in Australian deserts, by surveying bird assemblages across ~80 000 km2 of arid dune‐fields on either side of the Dingo Barrier Fence (DBF; a 5614 km‐long fence separating ecosystems in which dingoes are abundant from ecosystems in which dingoes are functionally extinct). Using fourth‐corner modelling, incorporating species’ traits, we identified apparent declines of sedentary birds that nest in low vegetation and small birds that feed primarily on grass seed, and increases in scavenging birds associated with the functional extinction of dingoes. Occupancy differed between sites inside and outside the DBF in 13 bird species. We hypothesise that these differences in bird assemblages across the DBF result, in part, from increases in kangaroos Macropus spp. and red foxes Vulpes vulpes in arid landscapes where dingoes have been removed. Our study provides evidence that the functional extinction of a large terrestrial predator has had pervasive ecosystem effects, including shifts in composition of avian assemblages.  相似文献   

8.
The mesopredator release hypothesis (MRH) predicts that reduced abundance of top‐order predators results in an increase in the abundance of smaller predators (mesopredators) due to a reduction in intra‐guild predation and competition. The irruption of mesopredators that follows the removal of top‐order predators can have detrimental impacts on the prey of the mesopredators. Here we investigated the mechanisms via which the presence of a top‐order predator can benefit prey species. We tested predictions made according to the MRH and foraging theory by contrasting the abundances of an invasive mesopredator (red fox Vulpes vulpes) and an endangered prey species (dusky hopping mouse Notomys fuscus), predator diets, and N. fuscus foraging behaviour in the presence and absence of a top‐predator (dingo Canis lupus dingo). As predicted by the MRH, foxes were more abundant where dingoes were absent. Dietary overlap between sympatric dingoes and foxes was extensive, and fox was recorded in 1 dingo scat possibly indicating intra‐guild predation. Notomys fuscus were more likely to occur in fox scats than dingo scats and as predicted by the MRH N. fuscus were less abundant in the absence of dingoes. The population increase of N. fuscus following rainfall was dampened in the absence of dingoes suggesting that mesopredator release can attenuate bottom‐up effects, although it remains conceivable that differences in grazing regimes associated with dingo exclusion could have also influenced N. fuscus abundance. Notomys fuscus exhibited lower giving‐up densities in the presence of dingoes, consistent with the prediction that their perceived risk of predation would be lower and foraging efficiency greater in the presence of a top‐predator. Our results suggest that mesopredator suppression by a top predator can create a safer environment for prey species where the frequency of fatal encounters between predators and prey is reduced and the non‐consumptive effects of predators are lower.  相似文献   

9.
Apex predator extirpation has been identified as a key driver of biodiversity losses. The mesopredator release hypothesis (MRH) predicts that reduced abundance of apex predators results in an increase in the abundance and predatory impact of mesopredators. Here we test predictions made according to the MRH that an apex predator, the dingo (Canis dingo), benefits a small ground-nesting bird, the little button-quail (Turnix velox), by reducing the abundance of introduced mesopredators, the red fox (Vulpes vulpes) and feral cat (Felis catus). We also examined an alternative hypothesis that herbivore grazing negatively affects little button-quail abundance by reducing ground cover. To test our predictions we compared dingo, mesopredator, quail, herbivore and ground cover abundances and predator diets over a 25 month period and across a 10,000 km2 region encompassing areas where dingoes were common and rare, pastoral properties, and conservation reserves. Little button-quails were primarily observed where dingoes were common and foxes rare. Cats were detected at low numbers throughout the sample area irrespective of the index abundance of little button-quails, dingoes or foxes. Birds occurred less frequently in dingo than fox or cat scats. Ground cover and herbivore grazing activity were poor correlates of little button-quail abundance. Our results are consistent with the hypothesis that apex predators’ mesopredator-suppressive effects translate to population-level benefits for a ground-nesting bird. Positive associations between the abundances of dingoes and small-prey species suggests that positive management of dingoes could be incorporated into broad-scale biodiversity conservation programs as a strategy to alleviate the predatory impacts of foxes.  相似文献   

10.
The direct and indirect interactions that large mammalian carnivores have with other species can have far‐reaching effects on ecosystems. In recent years there has been growing interest in the role that Australia's largest terrestrial predator, the dingo, may have in structuring ecosystems. In this study we investigate the effect of dingo exclusion on mammal communities, by comparing mammal assemblages where dingoes were present and absent. The study was replicated at three locations spanning 300 km in the Strzelecki Desert. We hypothesized that larger species of mammal subject to direct interactions with dingoes should increase in abundance in the absence of dingoes while smaller species subject to predation by mesopredators should decrease in abundance because of increased mesopredator impact. There were stark differences in mammal assemblages on either side of the dingo fence and the effect of dingoes appeared to scale with body size. Kangaroos and red foxes were more abundant in the absence of dingoes while Rabbits and the Dusky Hopping‐mouse Notomys fuscus were less abundant where dingoes were absent, suggesting that they may benefit from lower red fox numbers in the presence of dingoes. Feral cats and dunnarts (Sminthopsis spp.) did not respond to dingo exclusion. Our study provides evidence that dingoes do structure mammal communities in arid Australia; however, dingo exclusion is also associated with a suite of land use factors, including sheep grazing and kangaroo harvesting that may also be expected to influence kangaroo and red fox populations. Maintaining or restoring populations of dingoes may be useful strategies to mitigate the impacts of mesopredators and overgrazing by herbivores.  相似文献   

11.
12.
Top predators in terrestrial ecosystems may limit populations of smaller predators that could otherwise become over abundant and cause declines and extinctions of some prey. It is therefore possible that top predators indirectly protect many species of prey from excessive predation. This effect has been demonstrated in some small-scale studies, but it is not known how general or important it is in maintaining prey biodiversity. During the last 150 years, Australia has suffered the world's highest rate of mammal decline and extinction, and most evidence points to introduced mid-sized predators (the red fox and the feral cat) as the cause. Here, we test the idea that the decline of Australia's largest native predator, the dingo, played a role in these extinctions. Dingoes were persecuted from the beginning of European settlement in Australia and have been eliminated or made rare over large parts of the continent. We show a strong positive relationship between the survival of marsupials and the geographical overlap with high-density dingo populations. Our results suggest that the rarity of dingoes was a critical factor which allowed smaller predators to overwhelm marsupial prey, triggering extinction over much of the continent. This is evidence of a crucial role of top predators in maintaining prey biodiversity at large scales in terrestrial ecosystems and suggests that many remaining Australian mammals would benefit from the positive management of dingoes.  相似文献   

13.
It is increasingly common for apex predators to face a multitude of complex conservation issues. In Australia, dingoes are the mainland apex predator and play an important role in ecological functioning. Currently, however, they are threatened by hybridization with modern domestic dogs in the wild. As a consequence, we explore how increasing our understanding of the evolutionary history of dingoes can inform management and conservation decisions. Previous research on whole mitochondrial genome and nuclear data from five geographical populations showed evidence of two distinct lineages of dingo. Here, we present data from a broader survey of dingoes around Australia using both mitochondrial and Y chromosome markers and investigate the timing of demographic expansions. Biogeographic data corroborate the presence of at least two geographically subdivided genetic populations, southeastern and northwestern. Demographic modeling suggests that dingoes have undergone population expansion in the last 5,000 years. It is not clear whether this stems from expansion into vacant niches after the extinction of thylacines on the mainland or indicates the arrival date of dingoes. Male dispersal is much more common than female, evidenced by more diffuse Y haplogroup distributions. There is also evidence of likely historical male biased introgression from domestic dogs into dingoes, predominately within southeastern Australia. These findings have critical practical implications for the management and conservation of dingoes in Australia; particularly a focus must be placed upon the threatened southeastern dingo population.  相似文献   

14.
David Choquenot  David M. Forsyth 《Oikos》2013,122(9):1292-1306
The exploitation ecosystems hypothesis (EEH) proposes that 1) plant biomass reflects the primary productivity of an ecosystem modified by the regulating effect of herbivory, and 2) herbivore abundance reflects the productivity of plants modified by the regulating effect of predation. Primary productivity thus determines the number of trophic levels in an ecosystem and the extent to which bottom–up and top–down regulation influence the biomass ratios of adjacent and non‐adjacent trophic levels (i.e. trophic cascading). We constructed an interactive model of plant (pasture), herbivore (red kangaroo Macropus rufus) and predator (dingo Canis lupus dingo), a system in which trophic cascades have been suggested to occur, and used it to test the effects of increasing stochastic variation in primary productivity and dingo culling on predictions of the EEH. The model contained four feedback loops: the predator–herbivore and herbivore–plant feedback loops, and the predator and plant density‐dependent feedback loops. The equilibrium conditions along the primary productivity gradient reproduced the three zones of trophic dynamics predicted by the EEH, plus an additional zone at productivities above which the maximum density of a predator is achieved due to social regulation: that zone is characterized by increasing herbivore density and decreasing plant biomass. Culling dingoes produced trophic cascades that were strongly attenuated at primary productivities below which the maximum density of dingoes was attained. Results were robust to uncertainty in kangaroo off‐take by dingoes and to the efficacy of dingo culling, but prey switching by dingoes from red kangaroos to reptiles would weaken trophic cascades. We conclude that social regulation of carnivores has important implications for expression of the EEH and trophic cascades, and that attenuation of trophic cascades increases with increasing stochasticity in primary productivity. Our model also provides a framework for understanding the conditions in which dingo‐mediated trophic cascades might be expected to occur, and generates testable predictions about the effects of higher dingo densities (e.g. by stopping culling or reintroduction to former range) on kangaroo and pasture dynamics.  相似文献   

15.
Large predators can have profound impacts on community composition. Not only do they directly affect prey abundance, they also indirectly affect prey abundance through their direct effects on smaller predators. In Australia, dingoes fill the role of a large predator and, in southern Australia, have clear impacts on introduced foxes. Their effect on introduced cats, however, is less clear. Here we present data from multiple sites across northern Australia (where foxes are absent), which reveal a negative correlation between cat and dingo activity. This relationship could arise because cats avoid areas where dingoes are active, or because cats are less abundant in areas with high dingo densities, or a combination of both. At a subset of our study sites, we experimentally reduced dingo (but not cat) abundance by poison baiting. This resulted in a 55% drop in dingo activity within 4 weeks of baiting, but without a compensatory increase in cat activity. This suggests the negative correlation between cat and dingo activity is not a simple consequence of cats reactively avoiding areas with higher dingo traffic, but rather, that there are fewer cats in areas where dingoes are more active. This study is a rare demonstration of the potential for dingoes to affect the behaviour and potentially the population size of feral cats, and therefore reduce the impact of feral cats on vulnerable native prey species.  相似文献   

16.
Human behaviors can determine the success of efforts to restore predators to ecosystems. While behaviors such as lethal predator control may impede predator restoration, other land management practices can facilitate coexistence between predators and humans. Socio‐psychological theories provide useful tools for understanding and improving these human behaviors. We explore three frameworks to understand what shapes Australian livestock graziers' behaviors with regards to management of the threat that dingoes pose to livestock. These frameworks are the theory of reasoned action (incorporating values and beliefs about dingoes), the social identity approach, and perception of risk. We distributed a survey to Australian graziers by mail and online (n = 138) which allowed recording of information on these three frameworks and their engagement in lethal dingo control. Among the respondents, we found that all three frameworks were linked with lethal dingo control when assessed individually, but when combined in a hierarchical regression, only social identity (specifically, identifying as an “environmentalist” or “pest controller”) was significant in predicting behavior. This result reveals the strength of social norms and normative beliefs over perceived risk in shaping behavior. As such, social identity is a useful metric for predicting and understanding environmental management behavior. Determining what these social identities mean in a given context is important for identifying how to implement behavior change to promote evidence‐based management that facilitates restoration of wildlife such as predators to landscapes where conflict with humans occurs.  相似文献   

17.
Large‐bodied predators are well represented among the world's threatened and endangered species. A significant body of literature shows that in terrestrial and marine ecosystems large predators can play important roles in ecosystem structure and functioning. By contrast, the ecological roles and importance of large predators within freshwater ecosystems are poorly understood, constraining the design and implementation of optimal conservation strategies for freshwater ecosystems. Conservationists and environmentalists frequently promulgate ecological roles that crocodylians are assumed to fulfil, but often with limited evidence supporting those claims. Here, we review the available information on the ecological importance of crocodylians, a widely distributed group of predominantly freshwater‐dwelling, large‐bodied predators. We synthesise information regarding the role of crocodylians under five criteria within the context of modern ecological concepts: as indicators of ecological health, as ecosystem engineers, apex predators, keystone species, and as contributors to nutrient and energy translocation across ecosystems. Some crocodylians play a role as indicators of ecosystem health, but this is largely untested across the order Crocodylia. By contrast, the role of crocodylian activities in ecosystem engineering is largely anecdotal, and information supporting their assumed role as apex predators is currently limited to only a few species. Whether crocodylians contribute significantly to nutrient and energy translocation through cross‐ecosystem movements is unknown. We conclude that most claims regarding the importance of crocodylians as apex predators, keystone species, ecosystem engineers, and as contributors to nutrient and energy translocation across ecosystems are mostly unsubstantiated speculation, drawn from anecdotal observations made during research carried out primarily for other purposes. There is a paucity of biological research targeted directly at: understanding population dynamics; trophic interactions within their ecological communities; and quantifying the short‐ and long‐term ecological impacts of crocodylian population declines, extirpations, and recoveries. Conservation practices ideally need evidence‐based planning, decision making and justification. Addressing the knowledge gaps identified here will be important for achieving effective conservation of crocodylians.  相似文献   

18.
Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning.  相似文献   

19.
In arid environments, ecological refuges are often conceptualised as places where animal species can persist through drought owing to the localised persistence of moisture and nutrients. The mesopredator release hypothesis (MRH) predicts that reduced abundance of top-order predators results in an increase in the abundance of smaller predators (mesopredators) and consequently has detrimental impacts on the prey of the smaller predators. Thus according to the MRH, the existence of larger predators may provide prey with refuge from predation. In this study, we investigated how the abundance of an endangered rodent Notomys fuscus is affected by Australia's largest predator, the dingo Canis lupus dingo , introduced mesopredators, introduced herbivores, kangaroos and rainfall. Our surveys showed that N. fuscus was more abundant where dingoes occurred. Generalised linear modelling showed that N. fuscus abundance was associated positively with dingo activity and long-term annual rainfall and negatively with red fox Vulpes vulpes activity. Our results were consistent with the hypothesis that areas with higher rainfall and dingoes provide N. fuscus with refuge from drought and predation by invasive red foxes, respectively. Top-order predators, such as dingoes, could have an important functional role in broad-scale biodiversity conservation programmes by reducing the impacts of mesopredators.  相似文献   

20.
Detection and avoidance of predator cues can be costly, so it is important for prey to balance the benefits of gaining food against the costs of avoiding predators. Balancing these factors becomes more complicated when prey are threatened by more than one type of predator. Hence, the ability to recognize species‐specific predator odours and prioritize behaviours according to the level of risk is essential for survival. We investigated how rock rats, Zyzomys spp. modify their foraging behaviour and giving‐up density (GUD) in the presence of an apex predator, the dingo Canis dingo, a mesopredator, the northern quoll Dasyurus hallucatus, a herbivore, the rock wallaby Petrogale brachyotis as a pungency control and water as a procedural control. Both dingoes and quolls consume rock rats, but because quolls can enter small crevices inhabited by rock rats, they pose a greater threat to rock rats than dingoes. Rock rats demonstrated a stronger avoidance to quoll odour than dingo odour, and no avoidance of the pungency control (rock wallaby) and the procedural control (water). GUD values declined significantly over the duration of the study, but did not differ between odour treatments. Our results support the hypothesis that prey vary behaviour according to perceived predator threat, and show stronger responses to potentially more dangerous predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号