首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Pf prophages are ssDNA filamentous prophages that are prevalent among various Pseudomonas aeruginosa strains. The genomes of Pf prophages contain not only core genes encoding functions involved in phage replication, structure and assembly but also accessory genes. By studying the accessory genes in the Pf4 prophage in P. aeruginosa PAO1, we provided experimental evidence to demonstrate that PA0729 and the upstream ORF Rorf0727 near the right attachment site of Pf4 form a type II toxin/antitoxin (TA) pair. Importantly, we found that the deletion of the toxin gene PA0729 greatly increased Pf4 phage production. We thus suggest the toxin PA0729 be named PfiT for Pf 4 i nhibition t oxin and Rorf0727 be named PfiA for Pf iT a ntitoxin. The PfiT toxin directly binds to PfiA and functions as a corepressor of PfiA for the TA operon. The PfiAT complex exhibited autoregulation by binding to a palindrome (5′-AATTC N5GTTAA -3′) overlapping the -35 region of the TA operon. The deletion of pfiT disrupted TA autoregulation and activated pfiA expression. Additionally, the deletion of pfiT also activated the expression of the replication initiation factor gene PA0727. Moreover, the Pf4 phage released from the pfiT deletion mutant overcame the immunity provided by the phage repressor Pf4r. Therefore, this study reveals that the TA systems in Pf prophages can regulate phage production and phage immunity, providing new insights into the function of TAs in mobile genetic elements.  相似文献   

2.
Temperate phages can integrate their genomes into a specific region of a host chromosome to produce lysogens (prophage). During genome insertion, prophages may interrupt the gene coding sequence. In Bacillus subtilis, the sigma factor gene sigK is interrupted by a 48 kb prophage‐like element. sigK is a composite coding sequence from two partial genes during sporulation. For over two decades, however, no further examples of DNA element‐mediated gene reconstitution other than sigK have been identified in spore formers. Here we report that the gene for dipicolinic acid (DPA) synthetase β subunit spoVFB in B. weihenstephanensis KBAB4 is interrupted by a prophage‐like element named vfbin. DPA is synthesized in the mother cell and required for maintaining spore dormancy. We found that spoVFB was a composite coding sequence generated in the mother cell via chromosomal rearrangement that excised vfbin. Furthermore, vfbin caused excision after phage‐inducer treatment, but vfbin appeared to be defective as a prophage. We also found various spore‐forming bacteria in which sporulation‐related genes were disrupted by prophage‐like DNA elements. These results demonstrate the first example of a similar mechanism that affects a sporulation gene other than sigK and suggest that this prophage‐mediated DNA rearrangement is a common phenomenon in spore‐forming bacteria.  相似文献   

3.
Almost all bacterial genomes harbour prophages, yet it remains unknown why prophages integrate into tRNA-related genes. Approximately 1/3 of Shewanella isolates harbour a prophage at the tmRNA (ssrA) gene. Here, we discovered a P2-family prophage integrated at the 3′-end of ssrA in the deep-sea bacterium S. putrefaciens. We found that ~0.1% of host cells are lysed to release P2 constitutively during host growth. P2 phage production is induced by a prophage-encoded Rep protein and its excision is induced by the Cox protein. We also found that P2 genome excision leads to the disruption of wobble base pairing of SsrA due to site-specific recombination, thus disrupting the trans-translation function of SsrA. We further demonstrated that P2 excision greatly hinders growth in seawater medium and inhibits biofilm formation. Complementation with a functional SsrA in the P2-excised strain completely restores the growth defects in seawater medium and partially restores biofilm formation. Additionally, we found that products of the P2 genes also increase biofilm formation. Taken together, this study illustrates a symbiotic relationship between P2 and its marine host, thus providing multiple benefits for both sides when a phage is integrated but suffers from reduced fitness when the prophage is excised.  相似文献   

4.
5.
6.
The life cycle of temperate phages includes a lysogenic cycle stage when the phage integrates into the host genome and becomes a prophage. However, the identification of prophages that are highly divergent from known phages remains challenging. In this study, by taking advantage of the lysis-lysogeny switch of temperate phages, we designed Prophage Tracer, a tool for recognizing active prophages in prokaryotic genomes using short-read sequencing data, independent of phage gene similarity searching. Prophage Tracer uses the criterion of overlapping split-read alignment to recognize discriminative reads that contain bacterial (attB) and phage (attP) att sites representing prophage excision signals. Performance testing showed that Prophage Tracer could predict known prophages with precise boundaries, as well as novel prophages. Two novel prophages, dsDNA and ssDNA, encoding highly divergent major capsid proteins, were identified in coral-associated bacteria. Prophage Tracer is a reliable data mining tool for the identification of novel temperate phages and mobile genetic elements. The code for the Prophage Tracer is publicly available at https://github.com/WangLab-SCSIO/Prophage_Tracer.  相似文献   

7.
Summary Mutants of phage P2 unable by themselves to be integrated as prophages have been isolated. These mutants (int) are complemented by the wild type allele and may then yield stable lysogenic strains carrying an int prophage at location I in Escherichia coli C. These lysogens produce either no phage or little phage, depending on the int mutant used. All int mutants isolated appear to belong to a single complementation group.Exceptional lysogens carrying two or more int prophages may be obtained: they may produce spontaneously even more phage than normal lysogens, and they segregate out defective, singly lysogenic clones at low frequency. These exceptional lysogens carry both prophages in location I, presumably in tandem.Strains carrying two or more int prophages but defective in phage production were also isolated. One of these carries its prophages at two different, not closely linked, chromosomal locations.  相似文献   

8.
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates.  相似文献   

9.
Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere could silence centromere-proximal promoters, presumably due to subsequent polymerization of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, which was able to drive the expression of phage late genes encoding structural proteins of virion. We found that, following binding to IR4, the N15 Sop proteins could induce repression of this promoter. The repression depended on SopB and was enhanced in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters may control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.  相似文献   

10.
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host''s chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed.  相似文献   

11.
The well-characterized mycobacteriophage L5 forms stable lysogens in Mycobacterium smegmatis. Establishment of lysogeny involves integration of the phage genome into the chromosome of its mycobacterial hosts through an integrase-mediated site-specific recombination event. As L5 lysogens spontaneously generate free phage particles, prophage excision must also occur, although an L5 excisionase gene had not been identified. We show here that L5 gene 36 encodes the phage excisionase and is a small, heat-stable 56-amino-acid protein that strongly stimulates excisive recombination both in vivo and in vitro. The ability to manipulate the highly directional phage integration and excision reactions will provide powerful tools for the introduction, curing and recovery of foreign genes in recombinant mycobacterial strains.  相似文献   

12.
Members of the histone-like nucleoid-structuring (H-NS) family of proteins have been shown to play important roles in silencing gene expression and in nucleoid compaction. In Pseudomonas aeruginosa, the two H-NS family members MvaT and MvaU are thought to bind the same AT-rich regions of the chromosome and function coordinately to control a common set of genes. Here we present evidence that the loss of both MvaT and MvaU cannot be tolerated because it results in the production of Pf4 phage that superinfect and kill cells or inhibit their growth. Using a ClpXP-based protein depletion system in combination with transposon mutagenesis, we identify mutants of P. aeruginosa that can tolerate the depletion of MvaT in an ΔmvaU mutant background. Many of these mutants contain insertions in genes encoding components, assembly factors, or regulators of type IV pili or contain insertions in genes of the prophage Pf4. We demonstrate that cells that no longer produce type IV pili or that no longer produce the replicative form of the Pf4 genome can tolerate the loss of both MvaT and MvaU. Furthermore, we show that the loss of both MvaT and MvaU results in an increase in expression of Pf4 genes and that cells that cannot produce type IV pili are resistant to infection by Pf4 phage. Our findings suggest that type IV pili are the receptors for Pf4 phage and that the essential activities of MvaT and MvaU are to repress the expression of Pf4 genes.  相似文献   

13.
14.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

15.
Many microorganisms compete for extracellular iron using strain‐specific chelators known as siderophores. The ferric‐siderophore complex limits local access to iron because import requires a suitable cognate receptor. Interestingly, many species carry receptors that enable ‘cross‐feeding’ on heterologous siderophores made by neighboring organisms, although little is known about how this ubiquitous behaviour is regulated. Here, we investigated the soil bacterium Pseudomonas protegens Pf‐5, a strain remarkable for its ability to use dozens of heterologous siderophores. We characterized the expression of six pyoverdine‐type (PVD) siderophore receptors in response to their cognate PVD. In general, we found expression is tightly regulated to reflect availability of their cognate PVD. In contrast, Pf‐5 continues to secrete its own primary siderophore, PVDPf‐5, despite the capability and opportunity to cross‐feed. We demonstrate that this strategy is beneficial in co‐culture with a competing PVDPAO1‐producer, P. aeruginosa PAO1. Although Pf‐5 can cross‐feed on PVDPAO1, production of PVDPf‐5 is required to maintain a competitive advantage. We attribute this to an antagonistic effect of PVDPf‐5 on the growth of PAO1, presumably through limiting access to iron. Our results demonstrate the benefits of excluding competitors out‐weigh the incentives associated with a free‐loader lifestyle for Pf‐5.  相似文献   

16.
Huanglongbing (HLB), also known as citrus greening, is a destructive disease of citrus; it is considered a newly emerging disease which has spread to the Middle East and North Africa (MENA). In Iran, the disease was first found in 2009. In this study, two hypervariable prophage and phage‐related loci, bacteriophage repressor protein C1 (CLIBASIA_ 01645 locus) and prophage terminase gene (CLIBASIA_05610 locus), were used to determine the diversity and characterization of Candidatus Liberibacter asiaticus ( CLas) strains associated with HLB samples. Analyses of the CLIBASIA_01645 locus, characteristic of variable tandem repeat numbers (VTRNs), revealed the homogeneity of Iranian CLas isolates: However, this result showed two distinct genotypes (TRN < 10 and TRN > 10) of CLas in Iran. This is the first report documenting the presence of two differentially distributed genotypes of CLas in Iran. Sequence analysis of prophage terminase revealed the presence of two putative prophages (prophage I and prophage II) in the genome of CLas isolates of Iran. Frequency analysis of these two prophages by specific loci revealed the association between prophages populations, the development HLB symptoms and CLas genotypes and their interactions with another obligate symbiontic, HLB phytoplasma.  相似文献   

17.
Two independent isolates of the gut commensal Lactobacillus johnsonii were sequenced. These isolates belonged to the same clonal lineage and differed mainly by a 40.8-kb prophage, LJ771, belonging to the Sfi11 phage lineage. LJ771 shares close DNA sequence identity with Lactobacillus gasseri prophages. LJ771 coexists as an integrated prophage and excised circular phage DNA, but phage DNA packaged into extracellular phage particles was not detected. Between the phage lysin gene and attR a likely mazE (“antitoxin”)/pemK (“toxin”) gene cassette was detected in LJ771 but not in the L. gasseri prophages. Expressed pemK could be cloned in Escherichia coli only together with the mazE gene. LJ771 was shown to be highly stable and could be cured only by coexpression of mazE from a plasmid. The prophage was integrated into the methionine sulfoxide reductase gene (msrA) and complemented the 5′ end of this gene, creating a protein with a slightly altered N-terminal sequence. The two L. johnsonii strains had identical in vitro growth and in vivo gut persistence phenotypes. Also, in an isogenic background, the presence of the prophage resulted in no growth disadvantage.  相似文献   

18.
Salmonella isolates harbour a range of resident prophages which can influence their virulence and ability to compete and survive in their environment. Phage gene profiling of a range of phage types of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) indicates a significant level of correlation of phage gene profile with phage type as well as correlation with genotypes determined by a combination of multi-locus variable-number tandem repeat (VNTR) typing and clustered regularly interspaced short palindromic repeats (CRISPR) typing. Variation in phage gene profiles appears to be partly linked to differences in composition of variants of known prophages. We therefore conducted a study of the distribution of variants of ST64B and Gifsy-1 prophages and coincidently the presence of Gifsy-3 prophage in a range of S. Typhimurium phage types and genotypes. We have discovered two variants of the DT104 variant of ST64B and at least two new variants of Gifsy-1 as well as variants of related phage genes. While there is definite correlation between phage type and the prophage profile based on ST64B and Gifsy-1 variants we find stronger correlation between the VNTR/CRISPR genotype and prophage profile. Further differentiation of some genotypes is obtained by addition of the distribution of Gifsy-3 and a sequence variant of the substituted SB26 gene from the DT104 variant of ST64B. To explain the correlation between genotype and prophage profile we propose that suites of resident prophages promote clonality possibly through superinfection exclusion systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号