共查询到20条相似文献,搜索用时 15 毫秒
1.
Spring migration patterns,habitat use,and stopover site protection status for two declining waterfowl species wintering in China as revealed by satellite tracking 总被引:1,自引:0,他引:1 下载免费PDF全文
Yali Si Yanjie Xu Fei Xu Xueyan Li Wenyuan Zhang Ben Wielstra Jie Wei Guanhua Liu Hao Luo John Takekawa Sivananintha Balachandran Tao Zhang Willem F. de Boer Herbert H. T. Prins Peng Gong 《Ecology and evolution》2018,8(12):6280-6289
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species. 相似文献
2.
Effects of reproductive condition,roost microclimate,and weather patterns on summer torpor use by a vespertilionid bat 下载免费PDF全文
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high‐core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big‐eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day‐roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day‐roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context. 相似文献
3.
Allison K. Pierce Stephen J. Dinsmore Dennis Jorgensen Michael B. Wunder 《Journal of Field Ornithology》2017,88(1):30-38
Understanding the migratory movements and habitats used during the annual cycle of migrants is essential to developing comprehensive conservation strategies. Mountain Plovers (Charadrius montanus) are short‐distance migrants listed as a species of conservation concern in many states across their range, however, little is known about their migratory ecology. We used data from geolocators to describe the first direct estimates of migratory routes and migration schedules for Mountain Plovers breeding in Phillips County, Montana. We attached geolocators to 36 Mountain Plovers in 2010–2012 and recovered five (13.9%; three males and two females). Four of five Mountain Plovers in our study overwintered in Texas, and one overwintered in Arizona. Migration routes were relatively linear, with the exception of one plover that moved south and then west to reach its winter range in Arizona. Two plovers left breeding areas in mid‐July and the other three left in late September. All plovers used stopover sites near either eastern Colorado or southwest Kansas. Plovers that departed earlier used stopover sites for ~100 d, whereas those that left later used them for ~35 d. All plovers in our study arrived in wintering areas by early November and departed by late March. Our results suggest that eastern Colorado and southwest Kansas are important stopover areas during migration, and highlight the need to better understand how these locations support non‐breeding plovers. 相似文献
4.
5.
Using GIS and remote sensing to explore the influence of physical environmental factors and historical land use on bushland structure 下载免费PDF全文
Bushland is a vegetation type with a dense cover of woody plants of low stature and a grass understory. We explored the influence of environmental factors (precipitation, topography, geology, hydrology and waterhole density) and historical land use in the Tsavo ecosystem bushland. We mapped vegetation patterns in the region using remote sensing, GIS and field data and tested relationships with physical factors. We used regression analysis to explore the interaction of physical factors and human influence by including a protected and a nonprotected area, representing contrasting historical land use policies, as factors in the regression model. Bushland vegetation had the largest proportion in the region as a whole, but its proportion was notably greater in the nonprotected area. Precipitation, elevation, geology and historical land use were significant predictors of vegetation patterns in the regression models. Higher precipitation and elevation make woody plants superior competitors over grasses, resulting in predominance of bushland in such areas. Geologically, marine deposits result in shallow calcareous soils that favour grasses over trees, hence, absence of bushland. Wildlife management policies such as providing water for wildlife, protective boundaries and controlling wildfires influence distribution of wildlife and result in conditions that prevent regeneration and recruitment of trees. 相似文献
6.
New findings about the spatial and temporal use of the Eastern Atlantic Ocean by large juvenile loggerhead turtles 下载免费PDF全文
Nuria Varo‐Cruz Juan A. Bermejo Pascual Calabuig Daniel Cejudo Brendan J. Godley Luis F. López‐Jurado Stephen K. Pikesley Matthew J. Witt Lucy A. Hawkes 《Diversity & distributions》2016,22(4):481-492
7.
The dynamics of tent‐roosts in the palm Sabal mauritiiformis and their use by bats in a montane dry forest 下载免费PDF全文
Ana María Herrera‐Victoria Marlyn Zuluaga‐Egas Vladimir Rojas‐Díaz Leonor A. Valenzuela Gustavo H. Kattan 《Biotropica》2018,50(2):282-289
Tent‐making bats modify leaves to build refuges. Leaf modification involves energetic and defense costs that should be balanced by the benefits of tent‐roosting. The alteration of the leaf's vascular system reduces the tent's life expectancy, so to obtain a benefit, bats are expected to use tents regularly as long as they remain functional and not modify more leaves than necessary. Over 2 yr, we documented the dynamics of tent construction and use by Uroderma convexum and other bat species in the palm Sabal mauritiiformis in a Colombian transitional dry forest. We also assessed tent condition and compared it to nonmodified leaves of approximately the same age in focal palms. Probability of tent use by U. convexum varied between 57 percent during a reproductive period and 4 percent outside of this period. Bats cut the main vein of folioles, partially affecting water transport in the leaf. However, there were no differences between tents and nonmodified leaves in deterioration scores or deterioration rates over 1 yr. During 2 yr, 48 tents were lost for different causes, but this loss was balanced by the construction of 51 new tents. Thus, bats maintained an excess of usable tents. Palm leaves are long‐lived and seem preadapted to sustain damage and remain viable, particularly in species growing in dry environments. We present several hypotheses to explain the advantage of maintaining a tent surplus. 相似文献
8.
Recovery of tree and mammal communities during large‐scale forest regeneration in Kibale National Park,Uganda 下载免费PDF全文
Patrick A. Omeja Michael J. Lawes Amélie Corriveau Kim Valenta Dipto Sarkar Fernanda Pozzan Paim Colin A. Chapman 《Biotropica》2016,48(6):770-779
Tropical landscapes are changing rapidly as a result of human modifications; however, despite increasing deforestation, human population growth, and the need for more agricultural land, deforestation rates have exceeded the rate at which land is converted to cropland or pasture. For deforested lands to have conservation value requires an understanding of regeneration rates of vegetation, the rates at which animals colonize and grow in regenerating areas, and the nature of interactions between plants and animals in the specific region. Here, we present data on forest regeneration and animal abundance at four regenerating sites that had reached the stage of closed canopy forest where the average dbh of the trees was 17 cm. Overall, 20.3 percent of stems were wind‐dispersed species and 79.7 percent were animal‐dispersed species, while in the old‐growth forest 17.3 percent of the stems were wind‐dispersed species. The regenerating forest supported a substantial primate population and encounter rate (groups per km walked) in the regenerating sites was high compared to the neighboring old‐growth forests. By monitoring elephant tracks for 10 yr, we demonstrated that elephant numbers increased steadily over time, but they increased dramatically since 2004. In general, the richness of the mammal community detected by sight, tracks, feces, and/or camera traps, was high in regenerating forests compared to that documented for the national park. We conclude that in Africa, a continent that has seen dramatic declines in the area of old‐growth forest, there is ample opportunity to reclaim degraded areas and quickly restore substantial animal populations. 相似文献
9.
10.
Brendan K. Hobart H. Anu Kramer Gavin M. Jones Brian P. Dotters Sheila A. Whitmore John J. Keane M. Zachariah Peery 《Ibis》2021,163(1):253-259
Although the effects of shifting fire regimes on bird populations have been recognized as important to ecology and conservation, the consequences of fire for trophic interactions of avian species – and raptors in particular – remain relatively unknown. Here, we found that within national parks with long‐standing (40+ years) fire management programmes, California Spotted Owls Strix occidentalis occidentalis consumed predominantly Woodrats Neotoma spp. and Pocket Gophers Thomomys spp.; however, in contrast to our predictions, when their territories experienced more extensive and frequent fire, Spotted Owls consumed proportionally more Flying Squirrels Glaucomys oregonensis. We hypothesize this finding could have been driven by either changes to prey abundance following fires (e.g. increases in flying squirrels) or changes to prey availability (e.g. shifts in forest structure or flying squirrel spatial distribution that increased predation upon them by owls). Our work thus demonstrates that fire may have unexpected consequences for the trophic interactions of raptor species and provides valuable information for the conservation of Spotted Owls in fire‐prone forest landscapes. 相似文献
11.
Population structure of Purple Sandpipers (Calidris maritima) as revealed by mitochondrial DNA and microsatellites 下载免费PDF全文
Nathalie M. LeBlanc Donald T. Stewart Snaebjörn Pálsson Mark F. Elderkin Glen Mittelhauser Stephen Mockford Julie Paquet Gregory J. Robertson Ron W. Summers Lindsay Tudor Mark L. Mallory 《Ecology and evolution》2017,7(9):3225-3242
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America. 相似文献
12.
Mating ecology of beluga (Delphinapterus leucas) and narwhal (Monodon monoceros) as estimated by reproductive tract metrics 下载免费PDF全文
Trish C. Kelley Robert E. A. Stewart David J. Yurkowski Anna Ryan Steven H. Ferguson 《Marine Mammal Science》2015,31(2):479-500
Narwhal and beluga whales are important species to Arctic ecosystems, including subsistence hunting by Inuit, and little is understood about their mating ecology. Reproductive tract metrics vary across species in relation to mating strategy, and have been used to infer mating ecology. Reproductive tracts from beluga and narwhal were collected between 1997 and 2008 from five beluga stocks and two narwhal stocks across the Canadian Arctic. Tract length for males and females, relative testes mass for males, and tusk length for male narwhal were measured. We assessed variation relative to species, body size, stock, maturity, and season. Significant variation was found in testes mass across month and stock for beluga, and no significant difference between stock or date of harvest for narwhal. Beluga had significantly larger testes relative to body size than narwhal, suggesting they were more promiscuous than narwhal. A significant relationship was found between narwhal tusk length and testes mass, indicating the tusk may be important in female mate choice. No significant differences were found between narwhal and beluga reproductive tract length for males or females. The mating systems suggested for narwhal and belugas by our results mean the two species may respond differently to climate change. 相似文献
13.
Hannes Böttcher Pieter Johannes Verkerk Mykola Gusti Petr HavlÍk Giacomo Grassi 《Global Change Biology Bioenergy》2012,4(6):773-783
Forests of the European Union (EU) have been intensively managed for decades, and they have formed a significant sink for carbon dioxide (CO2) from the atmosphere over the past 50 years. The reasons for this behavior are multiple, among them are: forest aging, area expansion, increasing plant productivity due to environmental changes of many kinds, and, most importantly, the growth rates of European forest having been higher than harvest rates. EU countries have agreed to reduce total emissions of GHG by 20% in 2020 compared to 1990, excluding the forest sink. A relevant question for climate policy is: how long will the current sink of EU forests be maintained in the near future? And could it be affected by other mitigation measures such as bioenergy? In this article we assess tradeoffs of bioenergy use and carbon sequestration at large scale and describe results of the comparison of two advanced forest management models that are used to project CO2 emissions and removals from EU forests until 2030. EFISCEN, a detailed statistical matrix model and G4M, a geographically explicit economic forestry model, use scenarios of future harvest rates and forest growth information to estimate the future carbon balance of forest biomass. Two scenarios were assessed: the EU baseline scenario and the EU reference scenario (including additional bioenergy and climate policies). Our projections suggest a significant decline of the sink until 2030 in the baseline scenario of about 25–40% (or 65–125 Mt CO2) compared to the models’ 2010 estimate. Including additional bioenergy targets of EU member states has an effect on the development of this sink, which is not accounted in the EU emission reduction target. A sensitivity analysis was performed on the role of future wood demand and proved the importance of this driver for the future sink development. 相似文献
14.
M. Baucher J. Moussawi O. M. Vandeputte D. Monteyne A. Mol D. Pérez‐Morga M. El Jaziri 《Plant biology (Stuttgart, Germany)》2013,15(5):892-898
The MIR396 family, composed of ath‐miR396a and ath‐miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth‐Regulating Factor (GRF) gene family. ath‐miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath‐miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc‐miR396c, with a mature sequence identical to ath‐miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down‐regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down‐regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE‐PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification. 相似文献
15.
Foraging a new trail with northern fur seals (Callorhinus ursinus): Lactating seals from islands with contrasting population dynamics have different foraging strategies,and forage at scales previously unrecognized by GPS interpolated dive data 下载免费PDF全文
Brian C. Battaile Chad A. Nordstrom Nikolai Liebsch Andrew W. Trites 《Marine Mammal Science》2015,31(4):1494-1520
We reconstructed the foraging tracks of lactating northern fur seals (Callorhinus ursinus) from two eastern Bering Sea islands (St. Paul Island and Bogoslof Island) using linear interpolation between GPS locations recorded at a maximum of four times per hour and compared it to tri‐axial accelerometer and magnetometer data collected at 16 Hz to reconstruct pseudotracks between the GPS fixes. The high‐resolution data revealed distances swum per foraging trip were much greater than the distances calculated using linearly interpolated GPS tracks (1.5 times further for St. Paul fur seals and 1.9 times further for Bogoslof fur seals). First passage time metrics calculated from the high resolution data revealed that the optimal scale at which the seals searched for prey was 500 m (radius of circle searched) for fur seals from St. Paul Island that went off‐shelf, and 50 m for fur seals from Bogoslof Island and surprisingly, 50 m for fur seals from St. Paul that foraged on‐shelf. These area‐restricted search scales were significantly smaller than those calculated from GPS data alone (12 km for St. Paul and 6 km for Bogoslof) indicating that higher resolution movement data can reveal novel information about foraging behaviors that have important ecological implications. 相似文献
16.
17.
18.
19.
Yield,Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods 下载免费PDF全文
Santosh Shiwakoti Osama Saleh Shital Poudyal Abdulssamad Barka Yanping Qian Valtcho D. Zheljazkov 《化学与生物多样性》2017,14(4)
The profile and bioactivity of essential oil (EO) depends on genetic, environmental, and other factors. We hypothesized that the basil EO may be influenced by the distillation methods. Hence, a study was conducted to evaluate the effect of steam distillation (SD) and hydrodistillation (HD) extraction method on the yield, composition, and bioactivity of EO of sweet basil (Ocimum basilicum) and holy basil (Ocimum tenuiflorum). In both basil species, the EO yield (content) was significantly higher from SD than from HD. There were significant differences in the compounds’ concentrations of EO obtained from SD and HD as well, however, the same compounds were identified in the EO from HD and SD. In the EO of O. basilicum, the concentration of 74% of the identified compounds were higher in SD than HD, whereas in the EO of O. tenuiflorum, the concentration of 84% of identified compounds were higher in SD than in HD. However, the concentrations of two of the major compounds of O. basilicum EO (estragole and methyl cinnamate) and a major compound of O. tenuiflorum EO (methyl eugenol) were significantly higher in HD than in SD. The type of distillation did not affect the antioxidant capacity of basil EO within the species. This study demonstrated that the type of distillation may significantly affect oil yield and composition but not the antioxidant capacity of the EO from sweet and holy basil. 相似文献
20.
The combined effects of a long‐term experimental drought and an extreme drought on the use of plant‐water sources in a Mediterranean forest 下载免费PDF全文
Adrià Barbeta Monica Mejía‐Chang Romà Ogaya Jordi Voltas Todd E. Dawson Josep Peñuelas 《Global Change Biology》2015,21(3):1213-1225
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. 相似文献