首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In intensively used landscapes, remnant grassland fragments are often restricted to places unsuitable for agricultural cultivation. Such refuges are the ancient burial mounds called “kurgans,” which are typical landscape elements of the Eurasian steppe and forest steppe zone. Due to their hill‐like shape, loose soil structure and undisturbed status kurgans provide proper habitats for burrowing mammals. Accordingly, grassland vegetation on kurgans is often exposed to bioturbation, which can influence the habitat structure and plant species pool. In our study, we explored the effect of fox burrows and landscape context on the habitat properties and vegetation composition of small landscape elements, using kurgans as model habitats. We surveyed the vegetation of fox burrows and that of the surrounding grassland on five kurgans situated in cleared landscapes surrounded by arable lands and five kurgans in complex landscapes surrounded by grazed grasslands. We recorded the percentage cover of vascular plants, the amount of litter, and soil moisture content in twelve 0.5 m × 0.5 m plots per kurgan, in a total of 120 plots. We found that foxes considerably transformed habitat conditions and created microhabitats by changing the soil nutrient availability and reducing total vegetation cover and litter. Several grassland specialist species, mostly grasses (Agropyron cristatum, Elymus hispidus, and Stipa capillata) established in the newly created microhabitats, although the cover of noxious species was also considerable. We found that landscape context influenced the sort of species which could establish on kurgans by affecting the available species pool and soil moisture. Our results revealed that foxes act as ecosystem engineers on kurgans by transforming abiotic and biotic conditions by burrowing. Their engineering activity maintains disturbance‐dependent components of dry grasslands and increases local environmental heterogeneity.  相似文献   

2.
Genetic founder effects are often expected when animals colonize restored habitat in fragmented landscapes, but empirical data on genetic responses to restoration are limited. We examined the genetic response of banner‐tailed kangaroo rats (Dipodomys spectabilis) to landscape‐scale grassland restoration in the Chihuahuan Desert of New Mexico, USA. Dipodomys spectabilis is a grassland specialist and keystone species. At sites treated with herbicide to remove shrubs, colonization by D. spectabilis is slow and populations persist at low density for ≥10 years (≥6 generations). Persistence at low density and low gene flow may cause strong founder effects. We compared genetic structure of D. spectabilis populations between treated sites and remnant grasslands, and we examined how the genetic response to restoration depended on treatment age, area, and connectivity to source populations. Allelic richness and heterozygosity were similar between treated sites and remnant grasslands. Allelic richness at treated sites was greatest early in the restoration trajectory, and genetic divergence did not differ between recently colonized and established populations. These results indicated that founder effects during colonization of treated sites were weak or absent. Moreover, our results suggested founder effects were not mitigated by treatment area or connectivity. Dispersal is negatively density‐dependent in D. spectabilis, and we hypothesize that high gene flow may occur early in the restoration trajectory when density is low. Our study shows genetic diversity can be recovered more rapidly than demographic components of populations after habitat restoration and that founder effects are not inevitable for animals colonizing restored habitat in fragmented landscapes.  相似文献   

3.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

4.
Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation‐by‐distance and isolation‐by‐resistance models for this land snail, with an equal fit to least‐cost paths and circuit‐theory‐based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale‐dependent processes.  相似文献   

5.
Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’(much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south‐eastern Sweden (59°24’ N, 17°10’ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi‐natural grasslands, and grazed ex‐arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi‐natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi‐natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi‐natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present‐day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left.  相似文献   

6.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

7.
The loss of grasslands in southeastern South America has negatively affected grassland birds, leading to marked declines in their populations. However, the extent to which habitat transformation impacts on their reproductive performance, and whether the magnitude of these effects may be modulated by landscape matrices, is unknown. We assessed the effect of fragmentation on grassland bird reproduction by comparing the combined influence of fragmentation and landscape matrix on nesting success, brood parasitism and productivity of the Spectacled Tyrant Hymenops perspicillatus and the Brown‐and‐yellow Marshbird Pseudoleistes virescens. Surveys were undertaken in small grassland patches embedded within different landscape matrices (urban and agro‐ecosystem) and in a large patch within a reserve. Reproductive performance was adversely affected by fragmentation. However, these effects were conditioned by matrix type, and the response was not the same for the two species. For Brown‐and‐yellow Marshbird, fragmentation resulted in higher rates of brood parasitism and lower productivity regardless of the matrix type, whereas for Spectacled Tyrant, we found a negative effect only in an agricultural matrix. The lack of extensive grasslands makes small patches important; however, knowing the effects of different matrix types is critical to predicting the conservation value of grassland patches, and the response of different species is not uniform.  相似文献   

8.
Human‐induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at‐risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction‐site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad‐headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele‐environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally‐polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest‐stream specialist is adapting to pond‐grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.  相似文献   

9.
Dispersal may be strongly influenced by landscape and habitat characteristics that could either enhance or restrict movements of organisms. Therefore, spatial heterogeneity in landscape structure could influence gene flow and the spatial structure of populations. In the past decades, agricultural intensification has led to the reduction in grassland surfaces, their fragmentation and intensification. As these changes are not homogeneously distributed in landscapes, they have resulted in spatial heterogeneity with generally less intensified hedged farmland areas remaining alongside streams and rivers. In this study, we assessed spatial pattern of abundance and population genetic structure of a flightless grasshopper species, Pezotettix giornae, based on the surveys of 363 grasslands in a 430‐km² agricultural landscape of western France. Data were analysed using geostatistics and landscape genetics based on microsatellites markers and computer simulations. Results suggested that small‐scale intense dispersal allows this species to survive in intensive agricultural landscapes. A complex spatial genetic structure related to landscape and habitat characteristics was also detected. Two P. giornae genetic clusters bisected by a linear hedged farmland were inferred from clustering analyses. This linear hedged farmland was characterized by high hedgerow and grassland density as well as higher grassland temporal stability that were suspected to slow down dispersal. Computer simulations demonstrated that a linear‐shaped landscape feature limiting dispersal could be detected as a barrier to gene flow and generate the observed genetic pattern. This study illustrates the relevance of using computer simulations to test hypotheses in landscape genetics studies.  相似文献   

10.
Grasslands are among the most imperiled North American ecosystems. State Acres for Wildlife Enhancement (SAFE) is a national conservation program that converts agricultural fields into grasslands mainly to improve habitat for high priority wildlife species. To provide a broader assessment of the contribution of the SAFE program to biodiversity in the Midwest region of North America, we evaluated local and landscape constraints to restoration of small mammal communities. We livetrapped small mammals during three summers (2009–2011) on plots that were recently seeded, seeded 1–4 years prior to sampling, or established references (>10 years old). Restoration trajectories for small mammal communities included a shift over time from dominance by the habitat generalist Peromyscus maniculatus (deer mouse) to communities dominated by grassland Microtus species (prairie voles and meadow voles). Vole abundance during the first year following restoration depended on spatial connectivity provided by linear habitats (roadside ditches and grass waterways) within 300 m of the restored grassland. Patch size and seeding type (cool‐season versus warm‐season grasses) were not predictors of early restoration success. In 2011, voles experienced a severe regional decline consistent with multi‐year population cycles. During the crash, most remaining voles occurred on restored SAFE grasslands, but not on established grasslands. This surprising outcome suggests young restoration plots could function as refuges for voles during population declines in agricultural landscapes.  相似文献   

11.
The east‐coast free‐tailed bat Mormopterus norfolkensis Gray, 1839 is a threatened insectivorous bat that is poorly known and as such conservation management strategies are only broadly prescribed. Insectivorous bats that use human‐modified landscapes are often adapted to foraging in open microhabitats. However, few studies have explored whether open‐adapted bats select landscapes with more of these microhabitat features. We compared three morphologically similar and sympatric, molossid bats (genus Mormopterus) with different conservation status in terms of their association with vegetation, climate, landform and land‐use attributes at landscape and local habitat element scales. We predicted that these species would use similar landscape types, with semi‐cleared and low density urban landscapes used more than forested and heavily cleared landscapes. Additionally, we explored which environmental variables best explained the occurrence of each species by constructing post‐hoc models and habitat suitability maps. Contrary to predictions, we found that the three species varied in their habitat use with no one landscape type used more extensively than other types. Overall, M. norfolkensis was more likely to occur in low‐lying, non‐urban, riparian habitats with little vegetation cover. Mormopterus species 2 occupied similar habitats, but was more tolerant of urban landscapes. In contrast, Mormopterus species 4 occurred more often in cleared than forested landscapes, particularly dry landscapes with little vegetation cover. The extensive use of coastal floodplains by the threatened M. norfolkensis is significant because these habitats are under increasing pressure from human land‐uses and the predicted increase in urbanization is likely to further reduce the amount of suitable habitat.  相似文献   

12.

Questions

Small, remnant habitats embedded in degraded, human-dominated landscapes are generally not a priority in conservation, despite their potential role in supporting landscape-scale biodiversity. To warrant their inclusion in conservation management and policy, we question under which conditions they may exhibit the largest conservation value.

Location

Nine landscapes spread across the counties of Stockholm and Södermanland, Sweden.

Methods

Per landscape, plant communities were surveyed in 6 and 12 1 × 1 m2 plots across large, intact semi-natural grasslands and small remnant grasslands, respectively. These two contrasting grassland types served as a model system. A topsoil sample was taken in each plot to determine habitat quality in terms of soil pH, plant-available P, and C:N ratio. We used a joint species distribution model to analyse the extent to which grassland type and habitat quality define and predict resident community diversity and composition, including whether they support grassland specialists.

Results

At the landscape scale, the combined remnant grasslands sustained diverse plant communities which did include a significant subset of habitat specialists. Yet, the contribution of individual remnants clearly varied with local-scale habitat quality; soil phosphorus availability lowered plot-level species richness, mostly by constraining the occurrence of grassland specialists. Semi-natural grassland communities were comparatively insensitive to variation in soil phosphorus availability.

Conclusions

The combined habitat amount and the significant number of habitat specialists sustained by remnant grasslands with high habitat quality, shows they can represent a valuable resource to support landscape-scale biodiversity conservation. This offers no wildcard to neglect the continued biotic and abiotic threats on semi-natural grassland plant diversity such as chronic and accumulating P eutrophication, discontinuation of management or poor matrix permeability, as semi-natural grasslands harbour the majority of habitat specialists, while sourcing surrounding remnant grassland communities.
  相似文献   

13.
Although an extensive research has been done on the contribution of wild insects to apple pollination, most of these studies did not evaluate the effect of the surrounding landscape context on local pollinator communities. Our aim was to compare communities of wild bees in 31 equally managed apple orchards located in three contrasting landscape types (either dominated by apple, forest, or grasslands) and along an elevation gradient and to test a potential interaction between landscape context and elevation. The study was carried out in 2009 in Trentino (NE Italy), one of the major apple growing areas of Europe with ~12,000 ha of commercial orchards distributed between 150 and 950 m a.s.l. We found that apple-dominated landscapes drastically reduced wild bee species richness and abundance in the orchard compared to landscapes dominated by either grassland or forest. Forest-dominated landscapes benefited local species richness more than grassland-dominated landscapes, while abundance did not differ between grassland and forest. Total species richness and abundance further declined with increasing elevation, while no interactive effect was found between temperature and landscape context. The abundance of Apis mellifera in the apple-dominated landscapes was two to four times higher than in the landscapes dominated by forest and grasslands, respectively. Measures to restore natural pollinator communities by providing suitable habitats around the orchard would not only benefit conservation of general biodiversity, but would probably also contribute to reduce the dependence of apple pollination on managed honey bees.  相似文献   

14.
Changes in land use during the last century have caused fragmentation and a reduction in area of many species-rich habitats in the hemiboreal region. We examined abundances of plant species and their occurrence in different habitats in south-east Sweden. We found 361 plant species in 146 sample sites, which represented 14 different types of habitat. Most species were rare and occurred only in a few habitats. Almost half of all species (49%) were found in one or two habitats. Of these, 99 species occurred in one habitat only. The habitats with largest number of restricted species, i.e. habitat specialists, were dry to mesic semi-natural grasslands and remnant habitats such as road verges and mid field islets. The occurrence of 52 species was analysed with respect to topography, top- and subsoil and land use history. Few of the 52 species were affected by aspect or type of topsoil. Subsoil affected nearly half of the species and habitats with a convex landform influenced occurrence of > 90% of the species. Seventeen species were positively associated with a long continuity of grassland management, whereas two species were associated with lack of management. Open grasslands that are encroached by trees and shrubs show a decline in species number. Deciduous forests, especially wet deciduous forests, have a potential for restoring moist to mesic grassland habitats. Small remnant habitats are important for many of the species restricted to semi-natural grasslands. These habitats may function as "rescue sites" for the species, which in turn may promote dispersal and increase likelihood of restoration success. Therefore, remnant habitats are important for maintaining and restoring species richness in rural landscapes.  相似文献   

15.
Fragmentation of grasslands and forests is considered a major threat to biodiversity. In the case of plants, the effect of fragmentation or landscape context is still unclear and published results are divergent. One explanation for this divergence is the slow response of long‐lived plants, creating an extinction debt. However, this has not been empirically confirmed. In this study, data were compiled from broad‐scale studies of grasslands from throughout the world that relate plant diversity to fragmentation effects. Only seven studies from northern Europe, out of a total 61, gave any information on actual habitat fragmentation in time and space. In landscapes with >10% grassland remaining, present‐day species richness was related to past landscape or habitat pattern. In landscapes with <10% grassland remaining, in contrast, plant species richness was more related to contemporary landscape or habitat pattern. Studies from landscapes with >10% grassland remaining supported the concept of an extinction debt, while studies from more fragmented landscapes did not provide any evidence of an extinction debt. In order to make generalisations about historical legacies on species diversity in grasslands it is important to consider a range of highly transformed landscapes, and not only landscapes with a high amount of grassland remaining.  相似文献   

16.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

17.
The Conservation Reserve Program (CRP) has the potential to influence the distribution and abundance of grasslands in many agricultural landscapes, and thereby provide habitat for grassland-dependent wildlife. Greater prairie-chickens (Tympanuchus cupido pinnatus) are a grassland-dependent species with large area requirements and have been used as an indicator of grassland ecosystem function; they are also a species of conservation concern across much of their range. Greater prairie-chicken populations respond to the amount and configuration of grasslands and wetlands in agriculturally dominated landscapes, which in turn can be influenced by the CRP; however, CRP enrollments and enrollment caps have declined from previous highs. Therefore, prioritizing CRP reenrollments and new enrollments to achieve the greatest benefit for grassland-dependent wildlife seems prudent. We used models relating either lek density or the number of males at leks to CRP enrollments and the resulting landscape structure to predict changes in greater prairie-chicken abundance related to changes in CRP enrollments. We simulated 3 land-cover scenarios: expiration of existing CRP enrollments, random, small-parcel (4,040 m2) addition of CRP grasslands, and strategic, large-parcel (80,000 m2) addition of CRP grasslands. Large-parcel additions were the average enrollment size in northwestern Minnesota, USA, within the context of a regional prairie restoration plan. In our simulations of CRP enrollment expirations, the abundance of greater prairie-chickens declined when grassland landscape contiguity declined with loss of CRP enrollments. Simulations of strategic CRP enrollment with large parcels to increase grassland contiguity more often increased greater prairie-chicken abundance than random additions of the same area in small parcels that did not increase grassland contiguity. In some cases, CRP enrollments had no or a negative predicted change in greater prairie-chicken abundance because they provided insufficient grassland contiguity on the landscape, or increased cover-type fragmentation. Predicted greater prairie-chicken abundance increased under large-parcel and small-parcel scenarios of addition of CRP grassland; the greatest increases were associated with large-parcel additions. We suggest that strategic application of the CRP to improve grassland contiguity can benefit greater prairie-chicken populations more than an opportunistic approach lacking consideration of the larger landscape context. Strategic implementation of the CRP can benefit greater prairie-chicken populations in northwestern Minnesota, and likely elsewhere in landscapes where grassland continuity may be a limiting factor. © 2020 The Wildlife Society.  相似文献   

18.
Bees are mobile organisms that seek food and nesting opportunities from a range of habitats. It is important to understand the way they move in agricultural landscapes if we are to conserve them and benefit from their activity as pollinators. We surveyed bees using directional flight interception (Malaise) traps over a 1‐year period in two agricultural landscapes in south‐east Queensland, Australia. We placed traps at the ecotone between crops and remnant vegetation to establish the pattern of movement between these habitats. Species richness in these landscapes (70) was high relative to that in comparable studies. Some bees were active year round, but most were caught in the period September to March. Across the whole assemblage there was a significant pattern where more species were detected leaving rather than entering remnant vegetation. The same bias was true for the number of individuals of the two most abundant species (Homalictus urbanus and Apis mellifera). Species exclusively found in crops were smaller on average (and therefore have smaller foraging range) than their non‐crop counterparts. Together, these patterns indicate that while bees are abundant in crop habitat, the remnant vegetation is important as the point of origin for bee movements, and the riparian remnant in particular is richer than the dry native remnant. Compositional similarity among samples was significantly explained by landscape but also movement direction (i.e. to or from the riparian remnant) because different species showed different patterns of response. The landscape with greater native vegetation cover supported more species in and around crops than the landscape with less native vegetation.  相似文献   

19.
Plant species richness in central and northern European seminatural grasslands is often more closely linked to past than present habitat configuration, which is indicative of an extinction debt. In this study, we investigate whether signs of historical grassland management can be found in clear‐cuts after at least 80 years as coniferous production forest by comparing floras between clear‐cuts with a history as meadow and as forest in the 1870s in Sweden. Study sites were selected using old land‐use maps and data on present‐day clear‐cuts. Species traits reflecting high capacities for dispersal and persistence were used to explain any possible links between the plants and the historical land use. Clear‐cuts that were formerly meadow had, on average, 36% higher species richness and 35% higher richness of grassland indicator species, as well as a larger overall seed mass and lower anemochory, compared to clear‐cuts with history as forest. We suggest that the plants in former meadows never disappeared after afforestation but survived as remnant populations. Many contemporary forests in Sweden were managed as grasslands in the 1800s. As conservation of remaining grassland fragments will not be enough to reduce the existing extinction debts of the flora, these young forests offer opportunities for grassland restoration at large scales. Our study supports the concept of remnant populations and highlights the importance of considering historical land use for understanding the distribution of grassland plant species in fragmented landscapes, as well as for policy‐making and conservation.  相似文献   

20.
Landscape homogenisation represents one of the gravest threats to the biodiversity of intensively farmed landscapes. In such landscapes, many species persist within remnants of (semi)natural habitats, such as in the steppe grasslands of Southern Moravia, SE Czech Republic. We investigated how the butterfly fauna of insular grassland reserves is affected by the heterogeneity of the surrounding farmland. We followed two lines of evidence, one based on species richness, the other on species community composition, considering two aspects of landscape heterogeneity, composition (amount of land cover types) and configuration (geometry of land cover patches). After statistically correcting for individual reserves characteristics, and within-reserves biotope composition, we found that reserves amidst heterogeneous landscapes contained more species. With increasing buffers around the reserves, the strength of the effects decreased for landscape composition, and increased for landscape configuration. Similar patterns applied for the butterfly assemblage composition, but in a rather subtle manner, not reflecting a specialist versus generalist dichotomy. However, more red-listed species inclined towards reserves amidst heterogeneous matrices. The species most tightly associated with heterogeneous landscapes were those whose populations likely span across multiple patches of relatively rare biotopes, whereas those indifferent to configuration were either those persisting at isolated sites, or those utilising common biotope types outside the reserves. The importance of landscape configuration suggests that relatively cheap restoration measures aimed at compartmentalisation the currently huge farmland units may substantially contribute to preserving biodiversity in intensively farmed regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号