首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The impact of elevated CO2 and N‐fertilization on soil C‐cycling in Lolium perenne and Trifolium repens pastures were investigated under Free Air Carbon dioxide Enrichment (FACE) conditions. For six years, swards were exposed to ambient or elevated CO2 (35 and 60 Pa pCO2) and received a low and high rate of N fertilizer. The CO2 added in the FACE plots was depleted in 13C compared to ambient (Δ? 40‰) thus the C inputs could be quantified. On average, 57% of the C associated with the sand fraction of the soil was ‘new’ C. Smaller proportions of the C associated with the silt (18%) and clay fractions (14%) were derived from FACE. Only a small fraction of the total C pool below 10 cm depth was sequestered during the FACE experiment. The annual net input of C in the FACE soil (0–10 cm) was estimated at 4.6 ± 2.2 and 6.3 ± 3.6 (95% confidence interval) Mg ha? 1 for T. repens and L. perenne, respectively. The maximum amount of labile C in the T. repens sward was estimated at 8.3 ± 1.6 Mg ha? 1 and 7.1 ± 1.0 Mg ha? 1 in the L. perenne sward. Mean residence time (MRT) for newly sequestered soil C was estimated at 1.8 years in the T. repens plots and 1.1 years for L. perenne. An average of 18% of total soil C in the 0–10 cm depth in the T. repens sward and 24% in the L. perenne sward was derived from FACE after 6 years exposure. The majority of the change in soil δ13C occurred in the first three years of the experiment. No treatment effects on total soil C were detected. The fraction of FACE‐derived C in the L. perenne sward was larger than in the T. repens sward. This suggests a priming effect in the L. perenne sward which led to increased losses of the old C. Although the rate of C cycling was affected by species and elevated CO2, the soil in this intensively managed grassland ecosystem did not become a sink for additional new C.  相似文献   

2.
Increases in the concentration of dissolved organic matter (DOM) have been documented in many inland waters in recent decades, a process known as “browning”. Previous studies have often used space‐for‐time substitution to examine the direct consequences of increased DOM on lake ecosystems. However, browning often occurs concomitant with other ecologically important water chemistry changes that may interact with or overwhelm any potential ecological response to browning itself. Here we examine a long‐term (~20 year) dataset of 28 lakes in the Adirondack Park, New York, USA, that have undergone strong browning in response to recovery from acidification. With these data, we explored how primary producer and zooplankton consumer populations changed during this time and what physical and chemical changes best predicted these long‐term ecosystem changes. Our results indicate that changes in primary producers are likely driven by reduced water clarity due to browning, independent of changes in nutrients, counter to previously hypothesized primary producer response to browning. In contrast, declines in calcium concomitant with browning play an important role in driving long‐term declines in zooplankton biomass. Our results indicate that responses to browning at different trophic levels are decoupled from one another. Concomitant chemical changes have important implications for our understanding of the response of aquatic ecosystems to browning.  相似文献   

3.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long‐term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12‐year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C‐degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long‐term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.  相似文献   

4.
We evaluated the “4 per 1000” initiative for increasing soil organic carbon (SOC) by analysing rates of SOC increase in treatments in 16 long‐term experiments in southeast United Kingdom. The initiative sets a goal for SOC stock to increase by 4‰ per year in the 0–40 cm soil depth, continued over 20 years. Our experiments, on three soil types, provided 114 treatment comparisons over 7–157 years. Treatments included organic additions (incorporated by inversion ploughing), N fertilizers, introducing pasture leys into continuous arable systems, and converting arable land to woodland. In 65% of cases, SOC increases occurred at >7‰ per year in the 0–23 cm depth, approximately equivalent to 4‰ per year in the 0–40 cm depth. In the two longest running experiments (>150 years), annual farmyard manure (FYM) applications at 35 t fresh material per hectare (equivalent to approx. 3.2 t organic C/ha/year) gave SOC increases of 18‰ and 43‰ per year in the 23 cm depth during the first 20 years. Increases exceeding 7‰ per year continued for 40–60 years. In other experiments, with FYM applied at lower rates or not every year, there were increases of 3‰–8‰ per year over several decades. Other treatments gave increases between zero and 19‰ per year over various periods. We conclude that there are severe limitations to achieving the “4 per 1000” goal in practical agriculture over large areas. The reasons include (1) farmers not having the necessary resources (e.g. insufficient manure); (2) some, though not all, practices favouring SOC already widely adopted; (3) practices uneconomic for farmers—potentially overcome by changes in regulations or subsidies; (4) practices undesirable for global food security. We suggest it is more realistic to promote practices for increasing SOC based on improving soil quality and functioning as small increases can have disproportionately large beneficial impacts, though not necessarily translating into increased crop yield.  相似文献   

5.
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short‐ and long‐term memory in the radial arm maze, which was accompanied by enhanced long‐term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild‐type controls. Changes in paired‐pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia .  相似文献   

6.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

7.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

8.
9.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号