首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5‐kinase (PIKfyve) that converts phosphatidylinositol 3‐phosphate [PI(3)P] into phosphatidylinositol 3,5‐bisphosphate [PI(3,5)P2] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non‐pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2‐dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.   相似文献   

2.
Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol‐3‐phosphate and phosphatidylinositol‐3,5‐bisphosphate (PtdIns(3,5)P2), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2, blocked phagosome–lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2‐gated lysosomal Ca2+ channel. Because Ca2+ triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome–lysosome fusion. Using Fcγ receptor‐mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1‐silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1‐silenced and PIKfyve‐inhibited cells by forcible Ca2+ release with ionomycin. We also provide evidence that cytosolic Ca2+ concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome–lysosome fusion.   相似文献   

3.
The protein complex composed of the kinase PIKfyve, the phosphatase FIG4 and the scaffolding protein VAC14 regulates the metabolism of phosphatidylinositol 3,5‐bisphosphate, which serves as both a signaling lipid and the major precursor for phosphatidylinositol 5‐phosphate. This complex is involved in the homeostasis of late endocytic compartments, but its precise role in maintaining the dynamic equilibrium of late endosomes, endolysosomes and lysosomes remains to be determined. Here, we report that inhibition of PIKfyve activity impairs terminal lysosome reformation from acidic and hydrolase‐active, but enlarged endolysosomes. Our live‐cell imaging and electron tomography data show that PIKfyve activity regulates extensive membrane remodeling that initiates reformation of lysosomes from endolysosomes. Altogether, our findings show that PIKfyve activity is required to maintain the dynamic equilibrium of late endocytic compartments by regulating the reformation of terminal storage lysosomes.   相似文献   

4.
Autophagy depends on the repopulation of lysosomes to degrade intracellular components and recycle nutrients. How cells co‐ordinate lysosome repopulation during basal autophagy, which occurs constitutively under nutrient‐rich conditions, is unknown. Here, we identify an endosome‐dependent phosphoinositide pathway that links PI3Kα signaling to lysosome repopulation during basal autophagy. We show that PI3Kα‐derived PI(3)P generated by INPP4B on late endosomes was required for basal but not starvation‐induced autophagic degradation. PI(3)P signals were maintained as late endosomes matured into endolysosomes, and served as the substrate for the 5‐kinase, PIKfyve, to generate PI(3,5)P2. The SNX‐BAR protein, SNX2, was recruited to endolysosomes by PI(3,5)P2 and promoted lysosome reformation. Inhibition of INPP4B/PIKfyve‐dependent lysosome reformation reduced autophagic clearance of protein aggregates during proteotoxic stress leading to increased cytotoxicity. Therefore under nutrient‐rich conditions, PI3Kα, INPP4B, and PIKfyve sequentially contribute to basal autophagic degradation and protection from proteotoxic stress via PI(3,5)P2‐dependent lysosome reformation from endolysosomes. These findings reveal that endosome maturation couples PI3Kα signaling to lysosome reformation during basal autophagy.  相似文献   

5.
Phosphatidylinositol‐3,5‐bisphosphate (PI(3,5)P2) is a low‐abundance signaling lipid associated with endo‐lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2 in vacuolar acidification and morphology during ABA‐induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch‐clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2 does not affect the activity of vacuolar H+‐pyrophosphatase or vacuolar H+‐ATPase. Instead, PI(3,5)P2 at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+ pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC‐a), a member of the anion/H+ exchanger family formerly implicated in stomatal movements in Arabidopsis. H+‐dependent currents were absent in clc‐a knock‐out vacuoles, and canonical CLC‐a‐dependent nitrate/H+ antiport was inhibited by low concentrations of PI(3,5)P2. Finally, using the pH indicator probe BCECF, we show that CLC‐a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2 and advance our knowledge about the regulation of vacuolar ion transport.  相似文献   

6.
Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol‐3‐phosphate, an early endosomal regulator. However, phosphatidylinositol‐3‐phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol‐3,5‐bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol‐3,5‐bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor‐mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol‐3‐phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol‐3,5‐bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.   相似文献   

7.
Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is one of the phosphoinositides that controls endosomal trafficking events in eukaryotes. PtdIns(3,5)P2 is produced from PI(3)P by phosphatidylinositol 3-phosphate 5-kinase FAB1/PIKfyve. Recently, we reported that FAB1 predominantly localizes on the SNX1-residing late endosomes and a loss-of FAB1 function causes the release of late endosomal effector proteins, ARA7/RABF2b and SORTING NEXIN 1 from the endosome membrane, indicating that FAB1 or its product PtdIns(3,5)P2 mediates the maturation process of the late endosomes. Intriguingly, the ectopic expression of FAB1A could complement the sucrose-dependent seedling growth phenotype of snx1–1 mutant. Here, we demonstrated that the depletion of SNX1 causes the release of SNX2b-mRFP from the endosomal membrane. However, overexpression of FAB1A-GFP reassembles SNX2b-mRFP on the endosomal membrane despite the absence of SNX1. From these results, we proposed that SNX2b homodimer or SNX2a/SNX2b heterodimer might function as functional Sorting Nexin complex instead of SNX1 to attach the endosomal membrane by binding of overproduced PI(3,5)P2 in Arabidopsis.  相似文献   

8.
The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5) P 2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5) P 2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies.  相似文献   

9.
Lysosomal Ca2+ homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca2+ signaling was the discovery of the two‐pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg2+ and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg2+ specifically inhibited TPC2 outward current, whereas lysosomal Mg2+ partially inhibited both outward and inward currents in a lysosomal lumen pH‐dependent manner. Under controlled Mg2+, TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP‐mediated Ca2+ release in intact cells is regulated by Mg2+, PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP‐mediated Ca2+ signaling and link this pathway to Mg2+ homeostasis and MAP kinases, pointing to roles for lysosomal Ca2+ in cell growth, inflammation and cancer.  相似文献   

10.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

11.
Bone resorption and organelle homeostasis in osteoclasts require specialized intracellular trafficking. Sorting nexin 10 (Snx10) is a member of the sorting nexin family of proteins that plays crucial roles in cargo sorting in the endosomal pathway by its binding to phosphoinositide(3)phosphate (PI3P) localized in early endosomes. We and others have shown previously that the gene encoding sorting Snx10 is required for osteoclast morphogenesis and function, as osteoclasts from humans and mice lacking functional Snx10 are dysfunctional. To better understand the role and mechanisms by which Snx10 regulates vesicular transport, the aim of the present work was to study PIKfyve, another PI3P-binding protein, which phosphorylates PI3P to PI(3,5)P2. PI(3,5)P2 is known to be required for endosome/lysosome maturation, and the inhibition of PIKfyve causes endosome enlargement. Overexpression of Snx10 also induces accumulation of early endosomes suggesting that both Snx10 and PIKfyve are required for normal endosome/lysosome transition. Apilimod is a small molecule with specific, nanomolar inhibitory activity on PIKfyve but only in the presence of key osteoclast factors CLCN7, OSTM1, and Snx10. This observation suggests that apilimod's inhibitory effects are mediated by endosome/lysosome disruption. Here we show that both Snx10 and PIKfyve colocalize to early endosomes in osteoclasts and coimmunoprecipitate in vesicle fractions. Treatment with 10 nM apilimod or genetic deletion of PIKfyve in cells resulted in the accumulation of early endosomes, and in the inhibition of osteoclast differentiation, lysosome formation, and secretion of TRAP from differentiated osteoclasts. Snx10 and PIKfyve also colocalized in gastric zymogenic cells, another cell type impacted by Snx10 mutations. Apilimod-specific inhibition of PIKfyve required Snx10 expression, as it did not inhibit lysosome biogenesis in Snx10-deficient osteoclasts. These findings suggest that Snx10 and PIKfyve are involved in the regulation of endosome/lysosome homeostasis via the synthesis of PI(3,5)P2 and may point to a new strategy to prevent bone loss.  相似文献   

12.
Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative activities of the kinase and phosphatase in a spatio‐temporal manner that matches membrane fission events. The discovery of two such complexes supports this hypothesis. One regulates the interconversion of phosphatidylinositol and PtdIns(3)P by joining the Vps34 PtdIns 3‐kinase and the myotubularin 3‐phosphatases. The other regulates the interconversion between PtdIns(3)P and PtdIns(3,5)P2 through the Fab1/PIKfyve kinase and the Fig4/mFig4 phosphatase. These lipids are essential components of the endosomal identity code.  相似文献   

13.
14.
3‐phosphorylated phosphoinositides (3‐PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA‐mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time‐lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P2 in macropinosome‐late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P2‐dependent step is required for the proper maturation of the Salmonella‐containing vacuole (SCV) through the formation of Salmonella‐induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2‐encoded type 3 secretion system (SPI2‐T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.  相似文献   

15.
Phosphatidylinositol (PI) 4‐phosphate (PI(4)P) and its metabolizing enzymes serve important functions in cell signalling and membrane traffic. PI 4‐kinase type IIα (PI4KIIα) regulates Wnt signalling, endosomal sorting of signalling receptors, and promotes adaptor protein recruitment to endosomes and the trans‐Golgi network. Here we identify the E3 ubiquitin ligase Itch as binding partner and regulator of PI4KIIα function. Itch directly associates with and ubiquitinates PI4KIIα, and both proteins colocalize on endosomes containing Wnt‐activated frizzled 4 (Fz4) receptor. Depletion of PI4KIIα or Itch regulates Wnt signalling with corresponding changes in Fz4 internalization and degradative sorting. These findings unravel a new molecular link between phosphoinositide‐regulated endosomal membrane traffic, ubiquitin and the modulation of Wnt signalling.  相似文献   

16.
The signalling lipid PI(3,5)P2 is generated on endosomes and regulates retrograde traffic to the trans‐Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P2 levels. Mutations that lower PI(3,5)P2 cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P2 was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P2 regulatory complex by direct contact with the known regulators of PI(3,5)P2: Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (in fantile gl ios is) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P2 regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P2. Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.  相似文献   

17.
Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P‐binding proteins and identified in total six PX and FYVE domain‐containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2. Although depletion of putative PI(3)P‐binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P‐related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2. Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.  相似文献   

18.
The AMPK cascade is a sensor of cellular energy change, which monitors the AMP/ATP ratio to regulate cellular metabolism by restoring ATP levels, but its regulation of neuroinflammation mechanism remains unclear. Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been shown to improve several metabolic disorders, such as obesity and type II diabetes. However, the effect of berberine on neuroinflammatory responses in microglia are poorly understood. This study shows that berberine represses proinflammatory responses through AMP‐activated protein kinase (AMPK) activation in BV‐2 microglia. Our findings also demonstrate that berberine significantly down‐regulates LPS‐ or interferon (IFN)‐γ‐induced nitric oxide synthase (iNOS) and cyclo‐oxygenase‐2 (COX‐2) expression in BV‐2 microglia cells. Berberine also inhibited LPS‐ or IFN‐γ‐induced nitric oxide production. In addition, berberine effectively inhibited proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 expression. On the other hand, upon various inflammatory stimulus including LPS and IFN‐γ, berberine suppressed the phosphorylated of ERK but not p38 and JNK in BV‐2 microglia. AMPK activation is catalyzed by upstream kinases such as LKB1 and Ca2+/calmodulin‐dependent protein kinase kinase‐II (CaMKK II). Moreover, berberine induced LKB1 (Ser428), CaMKII (Thr286), and AMPK (Thr172) phosphorylation, but not AMPK (Ser485). Furthermore, the inhibitory effect of berberine on iNOS and COX‐2 expression was abolished by AMPK inhibition via Compound C, an AMPK inhibitor. Berberine‐suppressed ERK phosphorylation was also reversed by Compound C treatment. Our data demonstrate that berberine significantly induces AMPK signaling pathways activation, which is involved in anti‐neuroinflammation. J. Cell. Biochem. 110: 697–705, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

20.
PIKfyve: Partners, significance, debates and paradoxes   总被引:2,自引:0,他引:2  
Key components of membrane trafficking and signaling machinery in eukaryotic cells are proteins that bind or synthesize phosphoinositides. PIKfyve, a product of an evolutionarily conserved single-copy gene has both these features. It binds to membrane phosphatidylinositol (PtdIns)3P and synthesizes PtdIns(3,5)P2 and PtdIns5P. Molecular functions of PIKfyve are elusive but recent advances are consistent with a key role in the course of endosomal transport. PIKfyve dysfunction induces endosome enlargement and profound cytoplasmic vacuolation, likely as a result of impaired normal endosome processing and membrane exit out of endosomes. Multicellular organisms with genetically impaired function of PIKfyve or that of the PIKfyve protein partners regulating PtdIns(3,5)P2 homeostasis display severe disorders, including embryonic/perinatal death. This review describes recent advances on PIKfyve functionality in higher eukaryotes, with particular reference to biochemical and genetic insights in PIKfyve protein partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号