首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the Peruvian Amazon, white‐sand forests are patchily distributed and restricted to a few localities in the North. Although recent studies have documented patterns of habitat specialization by plants in these unique forests, very few studies of the fauna of these habitats have been conducted. The species composition of the avifauna of the white‐sand forests at six localities in the region was sampled by conducting transects and point counts. Surrounding habitats were also sampled to compare avifaunal communities and to determine the degree of restriction of bird species to white‐sand habitats. Non‐metric multidimensional scaling analysis showed that bird communities of white‐sand forests were more similar to each other than they were to terra firme or flooded forest communities. Sites on either side of the Amazon‐Marañón barrier were the most similar within habitat type consistent with the hypothesis that these rivers represent a major biogeographic barrier. Twenty‐six species, belonging to 13 families, were to some degree specialized to white‐sand forests. This is the first comprehensive ornithological assessment carried out on these habitats in Peru. The high degree of habitat specialization found in these 26 bird species highlights the need for conservation and management measures that will protect white‐sand forests.  相似文献   

2.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

3.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

4.
Due to anthropogenic activities, tropical rain forests face many challenges in sustaining biodiversity and maintaining global climates. This study explores how forest successional stage, tree composition, and stratum affect communities of saproxylic cerambycid beetles—concealed feeders that play important roles in forest nutrient cycling. Forty trees in five families (Fabaceae, Lecythidaceae, Malvaceae, Moraceae, and Sapotaceae) were sampled in a mosaic of old‐growth and secondary forest on the Osa Peninsula, Costa Rica. Bait branches yielded 3549 cerambycid individuals in 49 species. Species richness was almost identical in old‐growth and secondary forest, and both yielded specialists, but abundance was higher in old‐growth forest. Overall community structure was most strongly influenced by host plant species; within most plant families it was also impacted by forest successional status. Moraceae was the exception, presumably because the focal tree species was abundant in both old‐growth and secondary forest. Several host and old‐growth specialist species reached high densities within patches of old‐growth forest, but seldom colonized apparently suitable trees within secondary forest. This suggests that even small areas of old‐growth forest can act as refuges, but that secondary forest may act as a barrier to dispersal. The vulnerability of specialized saproxylic insects to land use change will be linked to the ability of their preferred hosts to disperse to and persist in successional habitats; rearing studies may provide the most accurate method to monitor community changes over time.  相似文献   

5.
Despite the importance of rivers in Amazonian biogeography, avian distribution patterns in river‐created habitats (i.e., floodplain forests) have been sparsely addressed. Here, we explore geographic variation in floodplain forest avifaunas, specifically regarding one of the most striking aspects of the Amazon: the diversity of river “colors” (i.e., types, based on the color of the water). We sampled the avifauna at 30 sites, located in 17 different rivers (nine black‐ and eight whitewater), in the Rio Negro basin, northwestern Brazil. Our sampling comprised ten 15‐min point‐counts per site, distributed every 500–1000 m along the river. We recorded a total of 352 bird species, many of which occurred in both river types. Although bird species richness was similar among rivers, we found significant differences in species composition. Nearly 14 percent of the species were significantly associated with one or the other river type. Most floodplain forest specialists occurred predominantly in whitewater rivers, whereas species that are typically associated with white‐sand habitats occurred in blackwater. Despite significant distinctions between river types, occurrence patterns and levels of habitat association differed among indicator species and may vary in the same species throughout its global distribution. There were also “intermediate” avifauna in some of our sites, suggesting that continuous parameters characterizing river types structure species turnover. The water color‐based classification of Amazonian rivers represents a simple and powerful predictor of the floodplain forest avifauna, offering a stimulating starting point for understanding patterns of floodplain bird distributions and for prioritizing conservation efforts in these overlooked habitats. Abstract in Portuguese is available with online material.  相似文献   

6.
Some birds use social cues, such as the presence of conspecifics, when selecting breeding habitat. This phenomenon, known as conspecific attraction, has been well‐documented in migratory species, but has not been assessed for resident species of birds. We used Dupont's Larks (Chersophilus duponti) as a model species to determine if conspecific attraction plays a role in habitat selection by resident species of birds. At our study site in Soria province in central Spain, we monitored two potential habitat patches and one managed site where management actions had provided apparently suitable habitat. At each site, we broadcast recordings of the songs and calls of male Dupont's Larks, and monitored their presence during the breeding season and dispersal period in 2018 using automated recorders and field surveys. No birds were attracted to our study sites. Our results suggest that management of patches of suitable habitat should occur close to areas (within 1 km) already occupied by Dupont's Larks to encourage natural colonization because, based on our results, playback of conspecific vocalizations may not attract the species to new breeding areas. However, additional studies are needed before drawing conclusions about the effectiveness of conspecific attraction for this and other resident species of birds.  相似文献   

7.
Direct tracking methods in combination with remote sensing data allow examination of habitat use by birds during migration. Species that roost communally during migration, such as some swallows, form large aggregations that can attract both avian and terrestrial predators. However, the extent to which they might use patchy habitats that could reduce predation risk during migration is unknown. We tested the hypothesis that Purple Martins (Progne subis) use forest islands (patches of suitable forest habitat surrounded by unsuitable habitat) as roost sites during migration between breeding sites in North America and overwintering sites in South America. We used high‐precision (< 10 m), archival GPS units deployed and retrieved during the 2015 and 2016 breeding seasons, respectively, at 12 colonies located across eastern North America. We found that Purple Martins roosted in forest islands more often than expected based on availability during both spring and fall migration. Despite an apparent association with urban habitats by Purple Martins based on observational and radar data in North America during the fall, the roost locations we identified during spring and fall migration were not more closely associated with urban areas than random locations. The use of forest islands during both spring and fall migration suggest that Purple Martins may use these habitats to reduce predation risk during migration. Our results suggest that some species of birds may use similar habitats as stopover sites during migration and that patches of forest habitat may be important conservation targets for Purple Martins and other species. Identifying habitat use during migration represents an important advance in support of full annual‐cycle conservation of Purple Martins and other migratory species with declining populations.  相似文献   

8.
Agricultural conversion of tropical forests is a major driver of biodiversity loss. Slowing rates of deforestation is a conservation priority, but it is also useful to consider how species diversity is retained across the agricultural matrix. Here, we assess how bird diversity varies in relation to land use in the Taita Hills, Kenya. We used point counts to survey birds along a land‐use gradient that included primary forest, secondary vegetation, agroforest, timber plantation and cropland. We found that the agricultural matrix supports an abundant and diverse bird community with high levels of species turnover, but that forest specialists are confined predominantly to primary forest, with the matrix dominated by forest visitors. Ordination analyses showed that representation of forest specialists decreases with distance from primary forest. With the exception of forest generalists, bird abundance and diversity are lowest in timber plantations. Contrary to expectation, we found feeding guilds at similar abundances in all land‐use types. We conclude that whilst the agricultural matrix, and agroforest in particular, makes a strong contribution to observed bird diversity at the landscape scale, intact primary forest is essential for maintaining this diversity, especially amongst species of conservation concern.  相似文献   

9.
Western Amazonia is known to harbour some of Earth's most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher's alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.  相似文献   

10.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

11.
Few data exist on seed dispersal by frugivorous birds in fragmented landscapes, originating from tropical dry forests, in contrast to more abundant data from tropical rain forests. In this study, we assessed the effect of frugivorous birds in a fragmented landscape of Veracruz, Mexico, now occupied by remnant fragments of tropical semi‐deciduous forest and dry deciduous forest, grassland, and shrubby patches on sand dunes. We determined four characteristics related to seed dispersal by birds: the interacting species of plants and birds, the characteristics of these species, spatio‐temporal variation in the dispersal system, and the outcome of the process. During one year, we recorded 54 frugivorous bird species and 33 ornithochorous plant species, which engaged in 176 different bird‐plant species interactions. Similarity (Sorensen index) of frugivorous bird communities using different vegetation types was high (>70%), suggesting that many bird species used all of the vegetation types. In contrast, the similarity of ornithochorous plant communities among vegetation types commonly was low (<37%), suggesting that most plant species were restricted to particular sites in this landscape. At the landscape level, as well as for tropical deciduous forest, we detected a significant positive relationship (Spearman's correlation of rank coefficient >0.65, P <0.05) among richness per month of frugivorous birds and plant species bearing fleshy fruits. Seeds of many plant species previously detected in studies of seed rain at the site were eaten by birds during this study. Most seeds of zoochorous species, which are deposited in the dry and decidous tropical forests patches, are produced within these vegetation types (i.e., they are autochthonous species), whereas bird‐dispersed seeds arriving in grassland and shrubby patches are produced outside (i.e., allochthonous) and are mostly woody species. Birds are important seed dispersers among vegetation types in this landscape but they have different effects in each one. The four characteristics studied, as well as the landscape approach of this research, allowed us to detect spatial and temporal patterns that otherwise would have remained undetected.  相似文献   

12.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

13.
In the face of the continuing destruction of tropical rainforests, a major challenge is to understand the consequences of these habitat changes for biodiversity and the time scale at which biodiversity can recover after such disturbances. In this study, we assessed the patterns in communities of birds among forests of varying age consisting of clear-cuts of former coniferous plantations, selectively logged compartments and primary forests in Kibale National Park, Uganda. Birds were surveyed by 10-minute point counts at 174 randomly located points in nine forest areas during September–October 2011. A total of 2 688 birds representing 115 species were recorded. The species density, diversity and dominance of all birds, and dominance of forest specialists showed no differences between forest areas, whereas the species density and diversity of forest specialists differed significantly between forest areas. The composition of communities of all birds and of forest specialists varied significantly among the forest areas. Our results show that even after 19 and 43 years, respectively, communities of birds in clear-cuts of former coniferous plantations and selectively logged forests have not fully recovered from the disturbances of logging, highlighting the need to preserve primary forests for conservation of birds.  相似文献   

14.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

15.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

16.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

17.
Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space‐borne optical (Landsat), ALOS‐PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest—agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR‐derived forest structure and Landsat‐derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.  相似文献   

18.
The relationship between selective logging and avian frugivores feeding on Celtis gomphophylla was examined in Budongo Forest Reserve, from June to July 2005, using scan sampling. Abundance and species richness of avian frugivores were compared between two compartments (N3 and W22 last logged in 1952 and 1997 respectively). Two 1‐ha plots were established in each compartment from which two C. gomphophylla trees selected for observation. A total of 203 avian frugivores comprising 17 species, visited the eight C. gomphophylla trees. Avian frugivore abundance and richness were significantly higher in N3 than W22 (χ2 = 5.83, χ2 = 0.03, P < 0.05). Fischer's alpha diversity index also indicated a higher avian frugivore (frugivory?) in N3 than that in W22. The Sorensen's similarity index showed that species composition between the two compartments was moderately similar. The diversity of forest specialists and generalists was not significantly different in the two compartments (F = 0.3451, P = 0.082 and F = 0.368, P = 0.553). Our results stress the significance of logging intensity on avian feeding guilds and confirm that forests which have had enough recovery time are better habitats for avian frugivore assemblages.  相似文献   

19.
Tropical landscapes are changing rapidly as a result of human modifications; however, despite increasing deforestation, human population growth, and the need for more agricultural land, deforestation rates have exceeded the rate at which land is converted to cropland or pasture. For deforested lands to have conservation value requires an understanding of regeneration rates of vegetation, the rates at which animals colonize and grow in regenerating areas, and the nature of interactions between plants and animals in the specific region. Here, we present data on forest regeneration and animal abundance at four regenerating sites that had reached the stage of closed canopy forest where the average dbh of the trees was 17 cm. Overall, 20.3 percent of stems were wind‐dispersed species and 79.7 percent were animal‐dispersed species, while in the old‐growth forest 17.3 percent of the stems were wind‐dispersed species. The regenerating forest supported a substantial primate population and encounter rate (groups per km walked) in the regenerating sites was high compared to the neighboring old‐growth forests. By monitoring elephant tracks for 10 yr, we demonstrated that elephant numbers increased steadily over time, but they increased dramatically since 2004. In general, the richness of the mammal community detected by sight, tracks, feces, and/or camera traps, was high in regenerating forests compared to that documented for the national park. We conclude that in Africa, a continent that has seen dramatic declines in the area of old‐growth forest, there is ample opportunity to reclaim degraded areas and quickly restore substantial animal populations.  相似文献   

20.
In tropical regions, many studies have focused on how vegetation and ecosystem processes recover following the abandonment of anthropogenic activities, but less attention has been given to the recovery patterns of vertebrates. Here we conduct a meta‐analysis (n = 147 studies) of amphibian, reptile, bird and mammal recovery during tropical secondary forest succession (i.e. natural regeneration). For each taxonomic group, we compared changes in species richness and compositional similarity during natural secondary succession to reference forests (mature or old growth forest). In addition, we evaluated the response of forest specialists and the change in bird and mammal functional groups during natural secondary succession in the tropical moist forest biome. Overall, species richness of all groups reached levels of the reference forests during natural secondary succession, but this was not the case for species compositional similarity. The delay in recovery of forest specialists may be the reason for the delay in recovery of species compositional similarity. Overall, vertebrate recovery increased with successional stage, but other potential predictors of diversity recovery, such as, the geographical setting (amphibian and reptile species compositional similarity recovered more rapidly on islands), rainfall (mammal species richness and compositional similarity recovered faster in regions of low rainfall), and the landscape context (amphibian, reptile and mammal species compositional similarity recovered faster in regions with more forest patches) influenced vertebrate recovery. These results demonstrate the important role of secondary forests in providing habitat for many vertebrates, but the slow recovery of species compositional similarity, forest specialists and some functional groups (e.g. insectivorous birds) highlighted the challenge of secondary forest persistence, and strongly argues for the continued protection of old growth/mature forest as habitat for forest specialists and as sources for secondary forest sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号