首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Within Delphinidae, the sub‐family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub‐family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3‐dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C. hectori) were among the most asymmetric species, contradicting previous interpretations of odontocete skull asymmetry. J. Morphol. 277:776–785, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feeding Drosophila species. These species form the Drosophila subquinaria species complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinaria and D. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support that D. subquinaria is paraphyletic, showing that samples from the geographic region sympatric with D. recens are most closely related to D. recens, whereas samples from the geographic region allopatric with D. recens are most closely related to D. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily from D. recens into D. subquinaria in the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.  相似文献   

3.
Glassfishes of the family Ambassidae, comprising around 50 species, are distributed in the Indo‐West Pacific where they inhabit marine, estuarine, and freshwater ecosystems. We investigated for the first time the molecular phylogenetic and evolutionary relationships of this group using a combined dataset of mitochondrial and nuclear genes, particularly focusing on the taxa occurring in the Indian subcontinent. Results revealed that marine and freshwater genera of Ambassidae diverged during the Paleocene (~62 mya). The enigmatic monotypic genus Chanda is nested within the larger clade currently recognized as Parambassis, indicating its paraphyly. Based on cleared and stained osteological preparations and phylogenetic placement of Chanda nama, we hypothesize that the elongated and protruding lower jaw is an autapomorphic character that might have evolved for the lepidophagous habit of the species. The southern Indian species of Parambassis, Parambassis dayi, and Parambassis thomassi, which formed a monophyletic group, probably diverged from other species of Parambassis and Chanda nama around the Eocene (~42 mya) and can potentially be recognized as a distinct genus in view of the apomorphic characters such as the presence of serration on the ventral fringe of interopercle, densely serrated palatine and ectopterygoid, and the presence of more than 30 serrations along the lower preopercle and the posterior edge. Our analysis provides new insights into the evolution and phylogenetic relationships of glassy perchlets, including detailed relationships among the Indian species within this family.  相似文献   

4.
Approaches that integrate multiple independent, yet complimentary, lines of evidence have been effectively utilized to identify and evaluate species diversity. Integrative approaches are especially useful in taxa that exhibit cryptic diversity and are highly morphologically conserved, as well as organisms whose distributions may be sympatric or parapatric. The Incilius coccifer complex in Honduras is comprised of three putative taxa: I. coccifer, I. ibarrai and I. porteri. The taxonomy of the I. coccifer complex has been a source of debate among specialists, with some recognizing three species, while others choose to recognize one widespread taxon. To assess species boundaries and evaluate the taxonomic structure for the I. coccifer complex, we utilized a combination of comprehensive field sampling, molecular phylogenetics and macroecological modelling. Using 58 samples representing all three putative taxa, we generated sequence data from the mitochondrial loci 16S and COI in order to assess genetic diversity and phylogenetic relationships, and tested putative species boundaries using General Mixed Yule‐Coalescent models. To evaluate macroecological differences in the distribution of putative taxa, we utilized maximum entropy modelling and identified areas of suitable and non‐suitable habitat, as well as identifying potential areas of overlap between species habitats. We recovered three clades that broadly correspond to the three named taxa that, while being monophyletic, are separated by relatively small genetic distances. Species distribution models revealed that I. coccifer is macroecologically different than the other two taxa, but that I. ibarrai and I. porteri are highly similar. We uncovered cases of sympatry between pairs of species in at least three localities in Honduras, suggesting the potential for hybridization in these closely related lineages.  相似文献   

5.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

6.
Homoploid hybrid speciation, the origin of a hybrid species without change in chromosome number, is currently considered to be a rare form of speciation. In the present study, we examined the phylogenetic origin of Hippophaë gyantsensis, a diploid species occurring in the western Qinghai–Tibet Plateau. Some of its morphological and molecular traits suggest a close relationship to H. rhamnoides ssp. yunnanensis while others indicate H. neurocarpa. We conducted phylogenetic analyses of sequence data of two maternally inherited chloroplast (cp) DNA fragments and the bi‐parentally inherited nuclear ribosomal internal transcribed spacer (ITS) from 17 populations of H. gyantsensis, 15 populations of H. rhamnoides ssp. yunnanensis and 27 populations of H. neurocarpa across their distributional ranges, and modelled the niche differentiation of the three taxa. Multiple lines of evidence suggested that H. gyantsensis is a morphologically stable, genetically independent and ecologically distinct species. The inconsistent phylogenetic placements of the H. gyantsensis clade that comprised the dominant cpDNA haplotypes and ITS ribotypes suggested a probable diploid hybrid origin from multiple crosses between H. rhamnoides ssp. yunnanensis and H. neurocarpa. This tentative hypothesis is more parsimonious than alternative explanations according to the data available, although more evidence based on further testing is needed.  相似文献   

7.
The venomous snake subfamily Hydrophiinae includes more than 40 genera and approximately 200 species. Most members of this clade inhabit Australia, and have been well studied. But, because of poor taxon sampling of Melanesian taxa, basal evolutionary relationships have remained poorly resolved. The Melanesian genera Ogmodon, Loveridgelaps, and Salomonelaps have not been included in recent phylogenetic studies, and the New Guinean endemic, Toxicocalamus, has been poorly sampled and sometimes recovered as polyphyletic. We generated a multilocus phylogeny for the subfamily using three mitochondrial and four nuclear loci so as to investigate relationships among the basal hydrophiine genera and to determine the status of Toxicocalamus. We sequenced these loci for eight of the 12 described species within Toxicocalamus, representing the largest molecular data set for this genus. We found that a system of offshore island arcs in Melanesia was the centre of origin for terrestrial species of Hydrophiinae, and we recovered Toxicocalamus as monophyletic. Toxicocalamus demonstrates high genetic and morphological diversity, but some of the molecular diversity is not accompanied by diagnostic morphological change. We document at least five undescribed species that all key morphologically to Toxicocalamus loriae (Boulenger, 1898), rendering this species polyphyletic. Continued work on Toxicocalamus is needed to document the diversity of this genus, and is likely to result in the discovery of additional species. Our increased taxon sampling allowed us to better understand the evolution and biogeography of Hydrophiinae; however, several unsampled lineages remain, the later study of which may be used to test our biogeographic hypothesis.  相似文献   

8.
Phylogenetic relationships in Daltoniaceae (~200 species in 14 genera) are inferred from nucleotide sequences from five genes, representing all genomic compartments, using parsimony, likelihood and Bayesian methods. Alternative classifications for Daltoniaceae have favoured traits from either sporophytes or gametophytes; phylogenetic transitions in gametophytic leaf limbidia and sporophytic exostome ornamentation were evaluated using ancestral state reconstruction to assess the levels of conflict between these generations. Elimbate leaves and the cross‐striate exostome are reconstructed as plesiomorphic states. Limbate leaves and papillose exostomes evolved at least two and six times, respectively, without reversals. The evolution of leaf limbidia is relatively conserved, but exostome ornamentation is highly homoplasious, indicating that superficial similarity in peristomes gives unreliable approximations of phylogenetic relatedness. Our phylogenetic analyses show that Achrophyllum and Calyptrochaeta are reciprocally monophyletic. Within core Daltoniaceae, relationships among taxa with elimbate leaves are generally well understood. However, taxa with limbate leaves form a monophyletic group, but resolved subclades correspond to biogeographical entities, rather than to traditional concepts of genera. Daltonia (~21 species), Distichophyllum (~100 species) and Leskeodon (~20 species) are polyphyletic. Seven nomenclatural changes are proposed here. As the current taxonomy of Daltoniaceae lacks phylogenetic consistency, critical generic revisions are needed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
The genus Pseustes Fitzinger, 1843 is composed of three recognized species, Pseustes poecilonotus, P. shropshirei and P. sulphureus, which may be the largest sized colubrid snake in the New World. The group has a complex systematic history that has yet to be untangled using modern molecular phylogenetic approaches. The systematic position, within‐group diversity and distribution are therefore uncertain. We obtained samples of four species from multiple specimens across their distribution and analysed one nuclear and two mitochondrial genes to determine the phylogenetic placement of the genus and infer relationships among Pseustes lineages. We find strong support for the paraphyly of Pseustes with respect to the monotypic genus Spilotes, both of which are nested within a clade of at least 23 other New World Colubrinae genera. Based on our results, we formally revise the taxonomy of P. poecilonotus and P. sulphureus, resurrecting the taxon P. polylepis for populations of P. poecilonotus from South America and allocating P. sulphureus to the genus Spilotes which renders both genera monophyletic. Additionally, we identify two lineages that are putatively new and currently unrecognized species. Finally, the placement of P. sulphureus, the type species of Pseustes, in the genus Spilotes, requires the allocation of the senior synonym Phrynonax be considered for the remaining Pseustes taxa.  相似文献   

10.
Groundwater calcretes in arid central Western Australia contain a diverse invertebrate groundwater fauna (stygofauna). Surveys have uncovered a diverse oniscidean isopod subterranean fauna above the water table (troglofauna), including species of a recently described genus Paraplatyarthrus. The aim of this study was to investigate the biogeographic history of Paraplatyarthrus and the timing of transitions from surface to subterranean habitats. Phylogenetic relationships among the isopod troglofauna from 11 groundwater calcretes along three palaeodrainage systems were assessed using one mitochondrial gene, cytochrome c oxidase subunit 1 (COI), and two nuclear markers, lysyl‐tRNA synthetase (LysRS) and 18S rRNA (18S) genes. Phylogenetic analyses revealed multiple sister lineage relationships between troglophile and troglobite lineages and evidence for divergent mtDNA lineages within species, providing a range of nodes for dating evolutionary transitions from surface to subterranean habitats. Relaxed molecular clock analyses provided evidence that evolutionary transitions from surface to subterranean environments took place between 13.3 and 1.75 million years ago, coinciding with the onset of aridification of Australia from the late Tertiary. In cases where groundwater calcretes contained multiple species, the taxa were not closely related phylogenetically, suggesting that these calcretes were independently colonised by multiple ancestral species. The study further confirmed the role of late/post‐Miocene aridification as a key driver of the evolution of subterranean invertebrates in the calcrete islands of Western Australia, supporting the climatic relict hypothesis. Troglobites most likely evolved from the troglophile ancestors that were capable of dispersal among, and active colonisation of, calcretes.  相似文献   

11.
Molecular phylogenetic analyses conducted over the past 15 yr have consistently had difficulties resolving relationships among the cetacean species in the subfamily Delphininae. In addition, paraphyly of the genera Tursiops and Stenella in these molecular phylogenies has been a recurrent problem since the first appearance of such a phylogeny in 1999, suggesting that these genera do not accurately reflect the evolutionary relationships of the species they contain. Morphological analyses have not resolved the issues. The genera in Delphininae originated in the 19th Century on questionable morphological grounds. The species were nearly all originally described in the genus Delphinus of Linnaeus. Recent molecular phylogenies based on various mitochondrial and nuclear DNA markers have suggested a wide range of possible relationships among these taxa, and several authors have suggested synonymizing all the taxa (Lagenodelphis, Stenella, Sousa, and Tursiops) under Delphinus. Until molecular and/or morphological analyses adequately sort out relationships in this very recently radiated group, one possible solution indeed would be to merge all the delphinine genera with Delphinus. Implications of such a move and alternatives are discussed.
Editor's Note: Papers from past Norris Award winners have primarily been a revised or reduced version of the actual presentation given as a plenary talk at the biennial conference. Dr. Perrin requested being allowed to take a topic from his presentation and expand on it to present a set of ideas in the form of an essay that could pass the rigors of the peer‐review process. As a result, this Norris Award paper has undergone peer‐review and has taken longer than usual for a Norris Award paper to appear in the journal following its presentation at the biennial conference. It also has co‐authors, with varying opinions on the issues discussed in the essay, to cover appropriately and more thoroughly those components of the paper that required additional expertise. I believe this approach has produced an excellent, thought‐provoking essay and is an approach that should be available to future Norris Award winners if they so choose to take it. Since this essay is meant to elicit dialogue, comments are welcome and will be considered for publication in Letters to the Editor.
  相似文献   

12.
Similar morphological characters and little molecular data of Amphioctopus rex, A. neglectus and A. cf. ovulum resulted in their unknown phylogenetic statuses and equivocal relationships. In this study, the complete mitochondrial genomes of these three species collected in Chinese waters were sequenced and compared with each other to clarify the relationships among them. The lengths of the mitochondrial genomes varied from 15,646 bp to 15,814 bp, and the A + T content and GC skew for protein‐coding genes showed little variation. In contrast, both a dendrogram based on codon usage and the gene arrangements of the three octopuses showed that A. rex was more closely related to A. neglectus than to A. cf. ovulum. Five data sets and two methods (maximum likelihood and Bayesian inference) were utilized for the first time to explore the phylogenetic relationships among these three species in Octopodidae. The results indicated that a data set combining protein‐coding genes and RNA genes (PR) was optimal for analysing the relationships among 43 cephalopods. All of the phylogenetic trees divided the cephalopods into 10 taxa and supported the monophyly of Oegopsida, Myopsida, Sepiidae and Octopodidae. In this study, Idiosepiidae was classified as sister to Sepiolidae. Trees constructed using all data sets robustly supported the monophyly of the genus Amphioctopus. Notably, A. rex was more closely related to A. neglectus than to A. cf. ovulum, although these three species share the characteristic of violet rings on dark ocelli.  相似文献   

13.
Oligoryzomys, as currently understood is formed by 25 living species, is the most diverse genus of the tribe Oryzomyini of the New World subfamily Sigmodontinae of cricetid rodents. Nonetheless, the species richness of Oligoryzomys seems to be an underestimate, given some species complex has been proposed in previous studies, at the time that large geographic areas remain to be sampled, and several taxonomic forms have not been assessed with contemporary approaches. In this study, we present a new assessment of the species diversity of Oligoryzomys based on multiple unilocus species delimitation methods (ABGD, BPP, PTP, GMYC and b GMYC), using 665 cytb gene sequences as evidence (532 gathered from Genbank and 133 obtained in this study). We sampled representatives of almost all currently known species of Oligoryzomys, at the time that extending the geographic coverage to the Central Andes, a large area that was largely unrepresented in previous studies. Phylogenetic relationships, based on a non‐redundant alignment, were inferred via maximum likelihood and Bayesian inference; an ultrametric tree, used in species delimitation analyses, was obtained using multiple secondary calibration points. Results of species delimitation methods are discussed at the light of previous knowledge (e.g., taxonomic history and geographic provenance of samples in relation to type localities) and the morphological assessments of some specimens. Results of the distinct delimitation methods are mostly congruent, being BPP and PTP the most sensible to estimate species delimitation, allowing us to suggest that Oligoryzomys is composed of 30 lineages of species level. Of these, 22 correspond to forms currently considered species; some of these include in their synonymy some forms currently considered valid species (e.g., yatesi would be a synonym of longicaudatus). The remaining eight lineages are candidate species that need to be further evaluated. This study, by advancing taxonomic hypothesis that should be further tested in future studies, constitutes a stepping‐stone for upcoming taxonomic and biogeographic studies centred on Oligoryzomys.  相似文献   

14.
Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within‐species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population‐level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 GST) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean GST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.  相似文献   

15.
The members of the Indochinese box turtle complex, namely Cuora galbinifrons, Cuora bourreti, and Cuora picturata, rank the most critically endangered turtle species on earth after more than three decades of over‐harvesting for food, traditional Chinese medicine, and pet markets. Despite advances in molecular biology, species boundaries and phylogenetic relationships, the status of the Cgalbinifrons complex remains unresolved due to the small number of specimens observed and collected in the field. In this study, we present analyses of morphologic characters as well as mitochondrial and nuclear DNA data to reconstruct the species boundaries and systematic relationships within the Cgalbinifrons complex. Based on principal component analysis (PCA) and statistical analysis, we found that phenotypic traits partially overlapped among galbinifrons, bourreti, and picturata, and that galbinifrons and bourreti might be only subspecifically distinct. Moreover, we used the mitochondrial genome, COI, and nuclear gene Rag1 under the maximum likelihood criteria and Bayesian inference criteria to elucidate whether C. galbinifrons could be divided into three separate species or subspecies. We found strong support for a sister relationship between picturata and the other two species, and consequently, we recommend maintaining picturata as a full species, and classifying bourreti and galbinifrons as subspecies of C. galbinifrons. These findings provide evidence for a better understanding of the evolutionary histories of these critically endangered turtles.  相似文献   

16.
Phymaturus is a clade of lizards that occurs at moderate to high elevations in western Argentina and the adjacent central region of Chile, as well as in various volcanic plateaus of the Patagonian region of Argentina. This genus had previously been divided into two groups: the patagonicus and the palluma groups. In this study, we analyzed relationships within the patagonicus group. The data set was built for 23 species plus nine other terminal taxa of undetermined taxonomic status. In total, 10,631 bp (ND4, Cytb, 12S, COI, five protein coding nuclear genes and seven anonymous nuclear loci) and 254 morphological characters were analyzed in a combined data set for 35 ingroup taxa and nine outgroups. We also ran separate DNA sequence and morphological data sets. We identified four main clades, and revealed congruencies and incongruences with previous studies. The indistinctus clade is recovered as the most basal within the patagonicus group in the strict parsimony analysis, while the somuncurensis clade is the most basal under Bayesian inference. The previously recovered calcogaster clade resulted paraphyletic in both analyses and part of their species are included in a redefined somuncurensis clade. We found low support at basal nodes provoked in part by contradictory evidence shown by rogue taxa. We show the phylogenetic information given by each partition/marker and how they contribute to relationships found in the total evidence analysis. We discuss the phylogenetic position of Phymaturus manuelae, Phymaturus tenebrosus, and Phymaturus patagonicus.  相似文献   

17.
Ranunculaceae are a nearly cosmopolitan plant family with the highest diversity in northern temperate regions and with relatively few representatives in the tropics. As a result of their position among the early diverging eudicots and their horticultural value, the family is of great phylogenetic and taxonomic interest. Despite this, many genera remain poorly sampled in phylogenetic studies and taxonomic problems persist. In this study, we aim to clarify the infrageneric relationships of Clematis by greatly improving taxon sampling and including most of the relevant subgeneric and sectional types in a simultaneous dynamic optimization of phenotypic and molecular data. We also investigate how well the available data support the hypothesis of phylogenetic relationships in the family. At the family level, all five currently accepted subfamilies are resolved as monophyletic. Our analyses strongly imply that Anemone s.l. is a grade with respect to the Anemoclema Clematis clade. This questions the recent sinking of well‐established genera, including Hepatica, Knowltonia and Pulsatilla, into Anemone. In Clematis, 12 clades conceptually matching the proposed sectional division of the genus were found. The taxonomic composition of these clades often disagrees with previous classifications. Phylogenetic relationships between the section‐level clades remain highly unstable and poorly supported and, although some patterns are emerging, none of the proposed subgenera is in evidence. The traditionally recognized and horticulturally significant section Viorna is both nomenclaturally invalid and phylogenetically unsupported. Several other commonly used sections are likewise unjustified. Our results provide a phylogenetic background for a natural section‐level classification of Clematis.  相似文献   

18.
19.
The phylogenetic relationships between western Palaearctic Zamenis and Rhinechis ratsnakes have been troubled, with recent estimates based on the supermatrix approach questioning their monophyly and providing contradictory results. In this study, we generated a comprehensive molecular data set for Zamenis and closely related ratsnakes to assess their phylogenetic and systematic relationships and infer their spatial and temporal modes of diversification. We obtained a fully resolved and well‐supported phylogeny, which is consistent across markers, taxon‐sets and phylogenetic methods. The close phylogenetic relationship between Rhinechis and Zamenis is well‐established. However, the early branching pattern within this clade, and the position of R. scalaris and Z. hohenackeri, remains poorly supported. The Persian ratsnake Z. persicus is sister to the Mediterranean species Z. situla, Z. longissimus and Z. lineatus, of which Z. situla is sister to a clade containing the latter two species. These results are consistent with a recent phylogenomic study on ratsnakes based on hundreds of loci. Whereas, topological tests based on our data and evidence from such phylogenomic study strongly rejected previous phylogenetic estimates based on the supermatrix approach and demonstrate that these “mega‐phylogenies”, with hundreds of taxa and high levels of missing data, have recovered inconsistent relationships with spurious nodal support. Biogeographical and molecular dating analyses suggest an origin of the ancestor of Rhinechis and Zamenis in the Aegean region with early cladogenesis during the Late Miocene associated with the Aegean arch formation and support a scenario of east‐to‐west diversification. Finally, while we have little morphological and phylogenetic evidence for the distinctiveness between Rhinechis and Zamenis, a classification of them in a single genus, and the designation of Zamenis scalaris (Schinz, 1822), reflects better their evolutionary relationships.  相似文献   

20.
Complete cytochrome b gene sequences from all but one species of delphinid plus four outgroups were analyzed using parsimony, maximum likelihood, and neighbor-joining methods. The results indicate the need for systematic revision of the family; a provisional classification is presented and compared to previous studies. Among the suggested revisions are removal of Orcinus from the Globicephalinae, placement of Grampus within the Globicephalinae, removal of all Lagenorhynchus spp. from the Delphininae, and placement of Sousa in the Delphininae. The genus Lagenorhynchus is found to be polyphyletic. L. albirostris (type species for the genus) and L. acutus are not closely related to each other or to nominal congeners. L. acutus is therefore assigned to the genus Leucopleurus. The remaining four Lagenorhynchus species are closely related to Lissodelphis and Cephalorbynchus and are placed in the genus Sagmatias. These three genera constitute the revised Lissodelphininae. Within the Delphininae, a well-supported clade includes the two species of Delphinus, Stenella clymene, S. frontalis, S. coeruleoalba, and the aduncus form of Tursiops truncatus. Accepting the monophyly of this group renders the genera Stenella and Tursiops polyphyletic. Apart from this finding, phylogenetic resolution within the Delphininae was poor, so comprehensive taxonomic revision of this group awaits further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号