首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mutation fu-gaeri1 (fug1) that suppressed leaf variegation of var2. Map-based cloning and subsequent characterization of the FUG1 locus demonstrated that it encodes a protein homologous to prokaryotic translation initiation factor 2 (cpIF2) located in chloroplasts. We show evidence that cpIF2 indeed functions in chloroplast protein synthesis in vivo. Suppression of leaf variegation by fug1 is observed not only in var2 but also in var1 (lacking FtsH5) and var1 var2. Thus, suppression of leaf variegation caused by loss of FtsHs is most likely attributed to reduced protein synthesis in chloroplasts. This hypothesis was further supported by the observation that another viable mutation in chloroplast translation elongation factor G also suppresses leaf variegation in var2. We propose that the balance between protein synthesis and degradation is one of the determining factors leading to the variegated phenotype in Arabidopsis leaves.  相似文献   

3.
4.
5.
6.
7.
Huang  Xing-Qi  Wang  Lin-Juan  Kong  Meng-Juan  Huang  Na  Liu  Xin-Ya  Liang  Han-Yu  Zhang  Jia-Xin  Lu  Shan 《Protoplasma》2021,258(2):371-378

Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.

  相似文献   

8.
9.
The Arabidopsis genome contains seven members of Hsp90. Mutations in plastid AtHsp90.5 were reported to cause defects in chloroplast development and embryogenesis. However, the exact function of plastid AtHsp90.5 has not yet been defined. In this study, albino seedlings were found among AtHsp90.5 transformed Arabidopsis, which were revealed to be AtHsp90.5 co‐suppressed plants. The accumulation of photosynthetic super‐complexes in the albinos was decreased, and expression of genes involved in photosynthesis was significantly down‐regulated. AtHsp90.5 T‐DNA insertion mutants were embryo‐lethal with embryo arrested at the heart stage. Further investigation showed AtHsp90.5 expression was up‐regulated in the siliques at 4 days post anthesis (DPA). Confocal microscopy proved AtHsp90.5 was located in the chloroplasts. Plastid development in the AtHsp90.5 mutants and co‐suppressed plants was seriously impaired, and few thylakoid membranes were observed, indicating the involvement of AtHsp90.5 in chloroplast biogenesis. AtHsp90.5 was found to interact with vesicle‐inducing protein in plastids 1 (VIPP1) by bimolecular fluorescence complementation system. The ratio between VIPP1 oligomers and monomers in AtHsp90.5 co‐suppressed plants drastically shifted toward the oligomeric state. Our study confirmed that AtHsp90.5 is vital for chloroplast biogenesis and embryogenesis. Further evidence also suggested that AtHsp90.5 may help in the disassembly of VIPP1 for thylakoid membrane formation and/or maintenance.  相似文献   

10.
11.
In order to withstand high light (HL) stress, plants have evolved both short-term defense and repair mechanisms and long-term acclimation responses. At present, however, the underlying signaling events and molecular mechanisms are still poorly understood. Analysis of the mutants coe1, coe1 gun1 double mutant and oeGUN1coe1 revealed increased sensitivity to HL stress as compared to wild type (WT), with oeGUN1 coe1 plants displaying the highest sensitivity. Accumulation of FTSH2 protein and degradation of D1 protein during the HL stress were shown to depend on both COE1 and GUN1. Overexpression of COE1 enhanced the induction of FTSH2 and the tolerance to HL stress. These results indicate that the COE1-GUN1 signaling pathway plays an important role in regulating the adaptation of plants to HL.  相似文献   

12.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

13.
14.
15.
16.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

17.
18.
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.  相似文献   

19.
Yu F  Liu X  Alsheikh M  Park S  Rodermel S 《The Plant cell》2008,20(7):1786-1804
The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.  相似文献   

20.
The ATP‐dependent protein chaperone heat‐shock protein 70 (Hsp70) displays broad anti‐aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of α‐synuclein (αSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation‐prone polypeptides. We show a nucleotide‐dependent interaction between Hsp70 and αSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with αSyn. Such a co‐aggregation phenomenon can be prevented in vitro by the co‐chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of αSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号