首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
myoinositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol‐based phospholipids that are abundant in animal and plant cells. The seven‐step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412–TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo‐inositol dehydrogenase IolG followed by three novel reactions. The first 2‐keto‐myo‐inositol intermediate is oxidized by another, previously unknown NAD‐dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5‐keto‐l ‐gluconate. The fourth step involves epimerization of 5‐keto‐l ‐gluconate to d ‐tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo‐inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418–TM0421) transporter to myo‐inositol‐phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.  相似文献   

2.
The NAD+‐dependent lactate dehydrogenase from Bacillus subtilis (BsLDH) catalyzes the enantioselective reduction of pyruvate to lactate. BsLDH is highly specific to NAD+ and exhibits only a low activity with NADP+ as cofactor. Based on the high activity and good stability of LDHs, these enzymes have been frequently used for the regeneration of NAD+. While an application in the regeneration of NADP+ is not sufficient due to the cofactor preference of the BsLDH. In addition, NADP+‐dependent LDHs have not yet been found in nature. Therefore, a structure‐based approach was performed to predict amino acids involved in the cofactor specificity. Methods of site‐saturation mutagenesis were applied to vary these amino acids, with the aim to alter the cofactor specificity of the BsLDH. Five constructed libraries were screened for improved NADP+ acceptance. The mutant V39R was identified to have increased activity with NADP+ relative to the wild type. V39R was purified and biochemically characterized. V39R showed excellent kinetic properties with NADP(H) and NAD(H), for instance the maximal specific activity with NADPH was enhanced 100‐fold to 90.8 U/mg. Furthermore, a 249‐fold increased catalytic efficiency was observed. Surprisingly, the activity with NADH was also significantly improved. Overall, we were able to successfully apply V39R in the regeneration of NADP+ in an enzyme‐coupled approach combined with the NADP+‐dependent alcohol dehydrogenase from Lactobacillus kefir. We demonstrate for the first time an application of an LDH in the regeneration of NADP+.  相似文献   

3.
Intracellular NADPH/NADP+ ratio in cells grown on various production media with different carbon and nitrogen sources had a positive correlation with the thymidine production. To improve thymidine production in a previously engineered E. coli strain, NAD+ kinase was overexpressed in it resulting in the NADPH/NADP+ ratio shifting from 0.184 to 0.267. The [NADH + NADP+]/[NAD+ + NADPH] ratio was, however, not significantly altered. In jar fermentation, 740 mg thymidine l−1 was produced in parental strain, while 940 mg l−1 of thymidine was produced in NAD+ kinase-expressing strain.  相似文献   

4.
A cytochrome P450BM3‐catalyzed reaction system linked by a two‐step cofactor regeneration was investigated in a cell‐free system. The two‐step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+‐dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3‐catalyzed reaction linked by the two‐step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10‐fold under initial reaction conditions. In contrast, a 10‐fold increase in STH units resulted in about a 9‐fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate‐determining step. In the system lacking the two‐step cofactor regeneration, 34% conversion of 50 μM of a model substrate (p‐nitrophenoxydecanoic acid) was attained using 50 μM NADPH. In contrast, with the two‐step cofactor regeneration, the same amount of substrate was completely converted using 5 μM of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10‐fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

6.
Lower plant species including some green algae, non‐vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+‐dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ‐aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg‐228, which seals the NADP+ in the coenzyme cavity via its 2′‐phosphate and α‐phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg‐121 and Arg‐457, and a hydrogen bond with Tyr‐296. While both arginine residues are pre‐formed for substrate/product binding, Tyr‐296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+ l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity.  相似文献   

8.
Metabolism of γ-Aminobutyrate in Agaricus bisporus. III. The Succinate-Semialdehyde: NAD (P)+ Oxidoreductase. The succinate-semialdehyde:NAD(P)+ oxidoreductase (E.C. 1.2.1.16) is responsible for the second step in the catabolism of γ-aminobutyrate: the irreversible enzymatic conversion of succinic semialdehyde (SSA) to succinate. Succinate semialdehyde dehydrogenase was extracted from mitochondrial fraction of fruit-bodies of Agaricus bisporus Lge. The mitochondrial pellet was sonicated and centrifuged at 110,000 g; the supernatant obtained was designated the “crude extract”. The enzyme was extremely unstable on storage, unless 1 mM EDTA and 20% glycerol were added. Kinetic studies were carried out at 30°C, and the formation of NADH or NADPH was followed by measuring increase of absorbance at 340 nm with a spectrophotometer. The dehydrogenase was completely inactive when the reaction was run in the absence of thiol and was more active with NAD+ than with NADP+. In the “crude extract” the activity with NADP+ had a pH optimum between 8.6 and 9.1 and the Km values for SSA and NADP+ were 2.0 × 10?4M and 1.4 × 10?4M respectively. The pH optimum with NAD+ was found between 8.6 and 8.8 and the Km value for SSA is 4.8 × 10?4M and for NAD+ 2.0 × 10?3M. With NAD+, the kinetic values (pH, Km) of the “crude extract” chromatographed on hydroxylapatite were unchanged. Inhibition by thiamine pyrophosphate (TPP) was uncompetitive with respect to NAD+, those by malate, ATP, ADP and NADPH non-competitive and that by NADH competitive. These results and the fact that activity with NAD+ was lost more slowly than with NADP+ indicate the possibility of at least two mitochondrial succinate-semialdehyde dehydrogenases, even though the activities of this enzyme assayed with NAD+ and NADP+ respectively were not able to be separated from each other by hydroxylapatite column chromatography. Some speculations on the metabolic regulation of this dehydrogenase and considerations on the significance of these results in the physiology of respiration in Agaricus bisporus Lge are given.  相似文献   

9.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific.  相似文献   

10.
Methanobacterium thermoautotrophicum (strain Marburg) was found to contain two malate dehydrogenases, which were partially purified and characterized. One was specific for NAD+ and catalyzed the dehydrogenation of malate at approximately one-third of the rate of oxalacetate reduction, and the other could equally well use NAD+ and NADP+ as coenzyme and catalyzed essentially only the reduction of oxalacetate. Via the N-terminal amino acid sequences, the encoding genes were identified in the genome of M. thermoautotrophicum (strain ΔH). Comparison of the deduced amino acid sequences revealed that the two malate dehydrogenases are phylogenetically only distantly related. The NAD+-specific malate dehydrogenase showed high sequence similarity to l-malate dehydrogenase from Methanothermus fervidus, and the NAD(P)+-using malate dehyrogenase showed high sequence similarity to l-lactate dehydrogenase from Thermotoga maritima and l-malate dehydrogenase from Bacillus subtilis. A function of the two malate dehydrogenases in NADPH:NAD+ transhydrogenation is discussed. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

11.
Domain‐swopped chimeras of the glutamate dehydrogenases from Clostridium symbiosum (CsGDH) (NAD+‐specific) and Escherichia coli (EcGDH) (NADP+‐specific) have been produced, with the aim of testing the localization of determinants of coenzyme specificity. An active chimera consisting of the substrate‐binding domain (Domain I) of CsGDH and the coenzyme‐binding domain (Domain II) of EcGDH has been purified to homogeneity, and a thorough kinetic analysis has been carried out. Results indicate that selectivity for the phosphorylated coenzyme does indeed reside solely in Domain II; the chimera utilizes NAD+ at 0.8% of the rate observed with NADP+, similar to the 0.5% ratio for EcGDH. Positive cooperativity toward L ‐glutamate, characteristic of CsGDH, has been retained with Domain I. An unforeseen feature of this chimera, however, is that, although glutamate cooperativity occurs only at higher pH values in the parent CsGDH, the chimeric protein shows it over the full pH range explored. Also surprising is that the chimera is capable of catalysing severalfold higher reaction rates (Vmax) in both directions than either of the parent enzymes from which it is constructed. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Polyol dehydrogenases of Acetobacter melanogenum were investigated. Three polyol dehydrogenases, i. e. NAD+-linked d-mannitol dehydrogenase, NAD+-linked sorbitol dehydrogenase and NADP+-linked d-mannitol dehydrogenase, in the soluble fraction of the organism were purified 12-fold, 8-fold and 88-fold, respectively, by fractionation with ammonium sulfate and DEAE-cellulose column chromatography. NAD+-linked sorbitol dehydrogenase reduced 5-keto-d-fructose (5KF) to l-sorbose in the presence of NADH, whereas NADP+-linked d-mannitol dehydrogenase reduced the same substrate to d-fructose in the presence of NADPH. It was also shown that NAD+-linked d-mannitol dehydrogenase was specific for the interconversion between d-mannitol and d-fructose and that this enzyme was very unstable in alkaline conditions.  相似文献   

13.
A possible vivo role of pyridine nucleotides and their oxidized/reduced ratio on the regulation of inositol biosynthesis in Neurospora crassa was studied.A direct correlation was obtained when the values of of the water-soluble free inositol pool from intact N. crassa mycelia were plotted agains their NAD+/NADH or NAD+ + NADP+/NADH + NADPH ratios. Higher values in this inositol pool coincided with higher values in the chosen ratios.In long-term experiments (48 h), where the mold was grown without shaking, lower values for the inositol pool, the in vitro activity of D-glucose-6-phosphate cycloaldolase (glucocycloaldolase) and the myo-inositol (inositol) in phospholipids were found than those for cells grown with vigorous shaking.In short-time experiements (20 min), using N. crassa cells depleted of endogenous substrates, the in vivo synthesis of inositol was higher in cells incubated with vigorous shaking than in cells incubated without shaking. Nevertheless, in these experiments the in vitro activity of glucocycloaldolase was not affected by the earation conditions.  相似文献   

14.
Two inducible NADP+-dependent glycerol dehydrogenase (GlcDH) activities were identified in Mucor circinelloides strain YR-1. One of these, denoted iGlcDH2, was specifically induced by n-decanol when it was used as sole carbon source in the culture medium, and the second, denoted iGlcDH1, was induced by alcohols and aliphatic or aromatic hydrocarbons when glycerol was used as the only substrate. iGlcDH2 was found to have a much broader substrate specificity than iGlcDH1, with a low activity as an ethanol dehydrogenase with NAD+ or NADP+ as cofactor. Both isozymes showed an optimum pH for activity of 9.0 in Tris-HCl buffer and are subject to carbon catabolite repression. In contrast, the constitutive NADP+-dependent glycerol dehydrogenases (GlcDHI, II, and III) were only present in cell extracts when the fungus was grown in glycolytic carbon sources or glycerol under oxygenation, and their optimum pH was 7.0 in Tris-HCl buffer. In addition to these five NADP+-dependent glycerol dehydrogenases, a NAD+-dependent alcohol dehydrogenase is also present in glycerol or n-decanol medium; this enzyme was found to have weak activity as a glycerol dehydrogenase.  相似文献   

15.
Recombinant pyridine nucleotide transhydrogenase (PNT) from Escherichia coli has been used to regenerate NAD+ and NADPH. The pnta and pntb genes encoding for the - and -subunits were cloned and co-expressed with NADP+-dependent alcohol dehydrogenase (ADH) from Lactobacillus kefir and NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii. Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes. Cells that were permeabilized with toluene showed ketone reduction only if both cofactors were present.  相似文献   

16.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

17.
18.
NAD+ and NADP+, chemically similar and with almost identical standard oxidation–reduction potentials, nevertheless have distinct roles, NAD+ serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD+-dependent for glutamate oxidation, NADP+-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD+ reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD+ but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP+ reduction by NADH, maintaining the coenzyme pools at different oxidation–reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD+-dependent, NADP+-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD+ or for NADP+ has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2′- and 3′-hydroxyls, dictating NAD+ specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD+ only, NADP+ only, or in higher animals both.  相似文献   

19.
Scyllo‐inositol (SI), a stereoisomer of inositol, is regarded as a promising therapeutic agent for Alzheimer's disease. Here, an in vitro cofactor‐balance biotransformation for the production of SI from myo‐inositol (MI) by thermophilic myo‐inositol 2‐dehydrogenase (IDH) and scyllo‐inositol 2‐dehydrogenase (SIDH) is presented. These two enzymes (i.e., IDH and SIDH from Geobacillus kaustophilus) are co‐expressed in Escherichia coli BL21(DE3), and E. coli cells containing the two enzymes are permeabilized by heat treatment as whole‐cell catalysts to convert MI to SI. After condition optimizations about permeabilized temperature, reaction temperature, and initial MI concentration, about 82 g L?1 of SI is produced from 250 g L?1 of MI within 24 h without any cofactor supplementation. This final titer of SI produced is the highest to the authors’ limited knowledge. This study provides a promising method for the large‐scale industrial production of SI.  相似文献   

20.
Malic enzymes catalyze the reversible oxidative decarboxylation of L-malate using NAD(P)+ as a cofactor. NADP-dependent malic enzyme (MaeB) from Escherichia coli MG1655 was expressed and purified as a fusion protein. The molecular weight of MaeB was about 83 kDa, as determined by SDS-PAGE. The recombinant MaeB showed a maximum activity at pH 7.8 and 46°C. MaeB activity was dependent on the presence of Mn2+ but was strongly inhibited by Zn2+. In order to understand the physiological roles, recombinant E. coli strains (icd NADPmaeB and icd NADmaeB) containing NADP-dependent isocitrate dehydrogenase (IDH), or engineered NAD-dependent IDH with the deletion of the maeB gene, were constructed using homologous recombination. During growth on acetate, icd NADmaeB grew poorly, having a growth rate only 60% that of the wild-type strain (icd NADP). Furthermore, icd NADPmaeB exhibited a 2-fold greater adaptability to acetate than icd NADmaeB, which may be explained by more NADPH production for biosynthesis in icd NADPmaeB due to its NADP-dependent IDH. These results indicated that MaeB was important for NADPH production for bacterial growth on acetate. We also observed that MaeB activity was significantly enhanced (7.83-fold) in icd NAD, which was about 3-fold higher than that in icd NADP, when switching from glucose to acetate. The marked increase of MaeB activity was probably induced by the shortage of NADPH in icd NAD. Evidently, MaeB contributed to the NADPH generation needed for bacterial growth on two carbon compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号