首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
For many years, myoglobin was considered as an intracellular globin involved in oxygen transport and storage in cardiac and skeletal muscles. Following the discovery of its ability to convert nitrite into nitric oxide during hypoxia, myoglobin was shown to play a new role in the hypoxic signaling pathway that regulates mitochondrial functions of the electron-transport chain. This review presents experimental evidence that supports this concept and discusses the significance of this newly reported ability for cardiac and skeletal muscle functions.  相似文献   

4.
5.
Synthesis of myoglobin by muscle polysomes   总被引:1,自引:0,他引:1  
  相似文献   

6.
Synopsis Muscle spindles from skeletal muscles of the rat and the guinea pig were stained to demonstrate their myoglobin content.Large intrafusal muscle fibres stained strongly for this pigment whilst the small intrafusal fibres showed little staining. This staining pattern contrasts strongly with that of the extrafusal muscle fibres.It has been suggested that myoglobin may act either as an oxygen storing or as an oxygen transporting pigment. The staining pattern present in muscle spindles indicates that myoglobin may act more as an oxygen transporting pigment than as an oxygen storing pigment.  相似文献   

7.
8.
Summary Control of mitochondrial respiration depends on ADP availability to the F1ATPase. An electrochemical gradient of ADP and ATP across the mitochondrial inner membrane is maintained by the adenine nucleotide translocase which provides ADP to the matrix for ATP synthesis and ATP for energy-dependent processes in the cytosol. Mitochondrial respiration is responsive to the cytosolic phosphorylation potential, ATP/ADP · Pi which is in apparent equilibrium with the first two sites in the electron transport chain. Conventional measures of free adenine nucleotides is a confounding issue in determining cytosolic and mitochondrial phosphorylation potentials. The advent of phosphorus-31 nuclear magnetic resonance (P-31 NMR) allows the determination of intracellular free concentrations of ATP, creatine-P and Pi in perfused muscle in situ. In the glucose-perfused heart, there is an absence of correlation between the cytosolic phosphorylation potential as determined by P-31 NMR and cardiac oxygen consumption over a range of work loads. These data suggest that contractile work leads to increased generation of mitochondrial NADH so that ATP production keeps pace with myosin ATPase activity. The mechanism of increased ATP synthesis is referred to as stimulusre-sponse-metabolism coupling. In muscle, increased contractility is a result of interventions which increase cytosolic free Ca2+ concentrations. The Ca2- signal thus generated increases glycogen breakdown and myosin ATPase in the cytosol. This signal is concomitantly transmitted to the mitochondria which respond to small increases in matrix Ca2+ by activation of Ca2+-sensitive dehydrogenases. The Ca2+-activated dehydrogenase activities are key rate-controlling enzymes in tricarboxylic acid cycle flux, and their activation by Ca2- leads to increased pyridine nucleotide reduction and oxidative phosphorylation. These observations which have been consistent in preparations both in vitro and in situ do not obviate a role for ADP control of muscle respiration, but do explain, in part, the lack of dramatic fluctuations in the cytosolic phosphorylation potential over a large range of contractile activities.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traff ic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a musclespecif ic protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.  相似文献   

16.
The contribution of nyoglobin to the oxygen uptake of red skeletal muscle was estimated from the difference in oxygen uptake with and without functional myoglobin. The oxygen uptake of bundles (25 mm long, 0.5 mm mean diameter) of muscle fibers teased from pigeon breast muscle was measured in families of steady states of oxygen pressure from 0 to 250 mm Hg. The oxygen-binding function of myoglobin, in situ in muscle fiber bundles, was abolished by treatment with nitrite of hydroxylamine, which convert oxymyoglobin in situ to high spin ferric myoglobin, or with phenylhydrazine, which converts oxymyoglobin to denatured products, or with 2-hydroxyethylhydrazine, which appears to remove myoglobin from the muslce. The oxygen uptake was again measured. At higher oxygen pressure, where oxygen availability does not limit the respiration of the fiber bundles, oxygen uptake is not affected by any of the four reagents, which is evidence that mitochondrial oxygen uptake is not impaired. At lower oxygen pressure, where oxygen uptake is one-half maximal, the steady state oxygen consumption is roughly halved by abolishing functional myoglobin. Under the steady state conditions studied, the storage function of myoglobin, being static, vanishes and the transport function stands revealed. We conclude from these experiments that myoglobin may transport a significant fraction of the oxygen consumed by muscle mitochondria.  相似文献   

17.
18.
Myoglobin (Mb) was isolated from skeletal muscle of JCL-ICR mice by heat denaturation-gel filtration combined with ion exchange chromatography or chromatofocusing by which isoelectric point of the main component was estimated as 7.63 +/- 0.09 (20 degrees C). The Mb was homogeneous by gel electrophoretic and ultracentrifugal analysis. The molecular weight by sedimentation equilibrium was 1.80 X 10(4) and essentially identical with the values by the iron analysis (1.82 X 10(4)) and amino acid composition (1.78 X 10(4)) in which one residue of cysteine was found per molecule. The spectroscopic properties of deoxy-, oxy-, carboxy- and ferri-derivatives of the protein were determined in ultraviolet, Soret and visible regions. The pK' of acid-alkaline transition of the ferri-form was estimated as 8.57 +/- 0.30 (30 degrees C) from the pH-dependent spectral changes. The oxygen equilibrium studies revealed complete absence of such allosteric properties as heme-heme interaction, anion effect and Bohr effect. Oxygen tension for the half-oxygenation (P50) was 0.69 +/- 0.06 Torr (20 degrees C) and its temperature-dependent change gave the delta H degrees of -14.1 kcal/mole.  相似文献   

19.
The association reaction of CO and O2 with heme is expected to reflect the differences in the electronic structures of the two ligands. CO binding should be controlled by a high spin/low spin transition while oxygen binding is spin-allowed. Dioxygen should thus bind substantially faster than CO. The experimental association rates of the two ligands are, however, almost identical. We propose that the reaction is triggered in both cases by a fast structural intermediate which allows the CO molecule to bind adiabatically. A suitable structural transition has been identified recently by inelastic neutron scattering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号