首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein structure of Actn4. To study the physical impact of such substitutions on the underlying cytoskeletal network, we examine the bulk mechanical behavior of in vitro actin networks cross-linked with wild-type and mutant Actn4. These networks exhibit a complex viscoelastic response and are characterized by fluid-like behavior at the longest timescales, a feature that can be quantitatively accounted for through a model governed by dynamic cross-linking. The elastic behavior of the network is highly nonlinear, becoming much stiffer with applied stress. This nonlinear elastic response is also highly sensitive to the mutations of Actn4. In particular, we observe that actin networks cross-linked with Actn4 bearing the disease-causing K255E mutation are more brittle, with a lower breaking stress in comparison to networks cross-linked with wild-type Actn4. Furthermore, a mutation that ablates the first actin binding site (ABS1) in Actn4 abrogates the network's ability to stress-stiffen is standard nomenclature. These changes in the mechanical properties of actin networks cross-linked with mutant Actn4 may represent physical determinants of the underlying disease mechanism in inherited focal segmental glomerulosclerosis.  相似文献   

3.
Vascular walls change their dimensions and mechanical properties adaptively in response to blood pressure. Because these responses are driven by the smooth muscle cells (SMCs) in the media, a detailed understanding of the mechanical environment of the SMCs should reveal the mechanism of the adaptation. As the mechanical properties of the media are highly heterogeneous at the microscopic level, the mechanical properties of the cells should be measured directly. The tensile properties of SMCs are, thus, important to reveal the microscopic mechanical environment in vascular tissues; their tensile properties have a close correlation with the distribution and arrangement of elements of the cytoskeletal networks, such as stress fibers and microtubules. In this review, we first introduce the experimental techniques used for tensile testing and discuss the various factors affecting the tensile properties of vascular SMCs. Cytoskeletal networks are particularly important for the mechanical properties of a cell and its mechanism of mechanotransduction; thus, the mechanical properties of cytoskeletal filaments and their effects on whole-cell mechanical properties are discussed with special attention to the balance of intracellular forces among the intracellular components that determines the force applied to each element of the cytoskeletal filaments, which is the key to revealing the mechanotransduction events regulating mechanical adaptation. Lastly, we suggest future directions to connect tissue and cell mechanics and to elucidate the mechanism of mechanical adaptation, one of the key issues of cardiovascular solid biomechanics.  相似文献   

4.
ABSTRACT

The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior.  相似文献   

5.
The mechanical behavior of plant tissues and its dependency on tissue geometry and turgor pressure are analytically dealt with in terms of the theory of cellular solids. A cellular solid is any material whose matter is distributed in the form of beamlike struts or complete “cell” walls. Therefore, its relative density is less than one and typically less than 0.3. Relative density is the ratio of the density of the cellular solid to the density of its constitutive (“cell wall”) material. Relative density depends upon cell shape and the density of cell wall material. It largely influences the mechanical behavior of cellular solids. Additional important parameters to mechanical behavior are the elastic modulus of “cell walls” and the magnitude of internal “cell” pressure. Analyses indicate that two “stiffening” agents operate in natural cellular solids (plant tissues): 1) cell wall infrastructure and 2) the hydrostatic influence of the protoplasm within each cellular compartment. The elastic modulus measured from a living tissue sample is the consequence of both agents. Therefore, the mechanical properties of living tissues are dependent upon the magnitude of turgor pressure. High turgor pressure places cell walls into axial tension, reduces the magnitude of cell wall deformations under an applied stress, and hence increases the apparent elastic modulus of the tissue. In the absence of turgid protoplasts or in the case of dead tissues, the cell wall infrastructure will respond as a linear elastic, nonlinear elastic, or “densifying” material (under compression) dependent upon the magnitude of externally applied stress. Accordingly, it is proposed that no single tangent (elastic) modulus from a stress-strain curve of a plant tissue is sufficient to characterize the material properties of a sample. It is also suggested that when a modulus is calculated that it be referred to as the tissue composite modulus to distinguish it from the elastic modulus of a noncellular solid material.  相似文献   

6.
The ultimate goal of all signaling pathways in cytokinesis is to control the mechanical separation of the mother cell into two daughter cells. Because of the intrinsic mechanical nature of cytokinesis, it is essential to understand fully how cell shapes and the material properties of the cell are generated, how these shapes and material properties create force, and how motor proteins such as myosin-II modify the system to achieve successful cytokinesis. In this review (which is part of the Cytokinesis series), we discuss the relevant physical properties of cells, how these properties are measured and the basic models that are used to understand cell mechanics. Finally, we present our current understanding of how cytokinesis mechanics work.  相似文献   

7.
The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular micro-or nanotechnologies, since any attempt to control cell behavior in a device must provide the appropriate physical microenvironment for the desired cell behavior. Cells sense, process, and respond to biophysical cues in their environment through a set of integrated, multi-scale structural complexes that span length scales from single molecules to tens of microns, including small clusters of force-sensing molecules at the cell surface, micron-sized cell-ECM focal adhesion complexes, and the cytoskeleton that permeates and defines the entire cell. This review focuses on several key technologies that have recently been developed or adapted for the study of the dynamics of structural micro-and nanosystems in living cells and how these systems contribute to spatially-and temporally-controlled changes in cellular structure and mechanics. We begin by discussing subcellular laser ablation, which permits the precise incision of nanoscale structural elements in living cells in order to discern their mechanical properties and contributions to cell structure. We then discuss fluorescence recovery after photobleaching and fluorescent speckle microscopy, two live-cell fluorescence imaging methods that enable quantitative measurement of the binding and transport properties of specific proteins in the cell. Finally, we discuss methods to manipulate cellular structural networks by engineering the extracellular environment, including microfabrication of ECM distributions of defined geometry and microdevices designed to measure cellular traction forces at micron-scale resolution. Together, these methods form a powerful arsenal that is already adding significantly to our understanding of the nanoscale architecture and mechanics of living cells and may contribute to the rational design of new cellular micro-and nanotechnologies.  相似文献   

8.
Intracellular mechanics of migrating fibroblasts   总被引:5,自引:0,他引:5       下载免费PDF全文
Cell migration is a highly coordinated process that occurs through the translation of biochemical signals into specific biomechanical events. The biochemical and structural properties of the proteins involved in cell motility, as well as their subcellular localization, have been studied extensively. However, how these proteins work in concert to generate the mechanical properties required to produce global motility is not well understood. Using intracellular microrheology and a fibroblast scratch-wound assay, we show that cytoskeleton reorganization produced by motility results in mechanical stiffening of both the leading lamella and the perinuclear region of motile cells. This effect is significantly more pronounced in the leading edge, suggesting that the mechanical properties of migrating fibroblasts are spatially coordinated. Disruption of the microtubule network by nocodazole treatment results in the arrest of cell migration and a loss of subcellular mechanical polarization; however, the overall mechanical properties of the cell remain mostly unchanged. Furthermore, we find that activation of Rac and Cdc42 in quiescent fibroblasts elicits mechanical behavior similar to that of migrating cells. We conclude that a polarized mechanics of the cytoskeleton is essential for directed cell migration and is coordinated through microtubules.  相似文献   

9.
Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the “actin cloud” and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.  相似文献   

10.
A Palmer  J Xu  S C Kuo    D Wirtz 《Biophysical journal》1999,76(2):1063-1071
Filamentous actin (F-actin), one of the constituents of the cytoskeleton, is believed to be the most important participant in the motion and mechanical integrity of eukaryotic cells. Traditionally, the viscoelastic moduli of F-actin networks have been measured by imposing a small mechanical strain and quantifying the resulting stress. The magnitude of the viscoelastic moduli, their concentration dependence and strain dependence, as well as the viscoelastic nature (solid-like or liquid-like) of networks of uncross-linked F-actin, have been the subjects of debate. Although this paper helps to resolve the debate and establishes the extent of the linear regime of F-actin networks' rheology, we report novel measurements of the high-frequency behavior of networks of F-actin, using a noninvasive light-scattering based technique, diffusing wave spectroscopy (DWS). Because no external strain is applied, our optical assay generates measurements of the mechanical properties of F-actin networks that avoid many ambiguities inherent in mechanical measurements. We observe that the elastic modulus has a small magnitude, no strain dependence, and a weak concentration dependence. Therefore, F-actin alone is not sufficient to generate the elastic modulus necessary to sustain the structural rigidity of most cells or support new cellular protrusions. Unlike previous studies, our measurements show that the mechanical properties of F-actin are highly dependent on the frequency content of the deformation. We show that the loss modulus unexpectedly dominates the elastic modulus at high frequencies, which are key for fast transitions. Finally, the measured mean square displacement of the optical probes, which is also generated by DWS measurements, offers new insight into the local bending fluctuations of the individual actin filaments and shows how they generate enhanced dissipation at short time scales.  相似文献   

11.
Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the “actin cloud” and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.  相似文献   

12.
Experiments are described in which the tensile strength, the initial (Youngs') modulus, and other mechanical properties of the bacterial cell wall were obtained as functions of relative humidity (RH) in the range of 20 to 95%. These properties were deduced from tensile tests on bacterial thread, a fiber consisting of many highly aligned cells of Bacillus subtilis, from which residual culture medium had been removed by immersion in water. Reasons are given to support the idea that the mechanical properties of bacterial thread relate directly to those of the cylinder wall and that they are not influenced by septa, cytoplasm, or the thread assembly. The data show that the cell wall, like many other heteropolymers, is visco-elastic. When dry, it behaves like a glassy polymer with a tensile strength of about 300 MPa and a modulus of about 13 GPa. When wet, its behavior is more like a rubbery polymer with a tensile strength of about 13 MPa and a modulus of about 30 MPa. Thus, the cell wall is stronger than previously reported. Walls of this strength would be able to bear a turgor pressure of 2.6 MPa (about 26 atm). The dynamic behavior suggests a wide range of relaxation times. The way in which mechanical behavior depends strongly on humidity is discussed in terms of possible hydrogen bond density and the ordering of water molecules. Cell walls in threads containing residual culture medium TB are, except at low RH, 10 times more flexible and about 4 times less strong. All of their mechanical properties appear to vary with change in RH in a manner similar to those of walls from which the culture medium has been washed, but with a downshift of about 18% RH.  相似文献   

13.
The primary cell walls of growing and fleshy plant tissue mostly share a common set of molecular components, cellulose, xyloglucan (XyG), and pectin, that are required for both inherent strength and the ability to respond to cell expansion during growth. To probe molecular mechanisms underlying material properties, cell walls and analog composites from Acetobacter xylinus have been measured under small deformation and uniaxial extension conditions as a function of molecular composition. Small deformation oscillatory rheology shows a common frequency response for homogenized native cell walls, their sequential extraction residues, and bacterial cellulose alone. This behavior is characteristic of structuring via entanglement of cellulosic rods and is more important than cross-linking with XyG in determining shear moduli. Compared with cellulose alone, composites with XyG have lower stiffness and greater extensibility in uniaxial tension, despite being highly cross-linked at the molecular level. It is proposed that this is due to domains of cross-linked cellulose behaving as mechanical elements, whereas cellulose alone behaves as a mat of individual fibrils. The implication from this work is that XyG/cellulose networks provide a balance of extensibility and strength required by primary cell walls, which is not achievable with cellulose alone.  相似文献   

14.
The intrinsic genetic program of a cell is not sufficient to explain all of the cell’s activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress–strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.  相似文献   

15.
16.
Sickle cell disease is caused by the amino acid substitution of glutamic acid to valine, which leads to the polymerization of deoxygenated sickle hemoglobin (HbS) into long strands. These strands are responsible for the sickling of red blood cells (RBCs), making blood hyper-coagulable leading to an increased chance of vaso-occlusive crisis. The conformational changes in sickled RBCs traveling through narrow blood vessels in a highly viscous fluid are critical in understanding; however, there are few studies that investigate the origins of the molecular mechanical behavior of sickled RBCs. In this work, we investigate the molecular mechanical properties of HbS molecules. A mechanical model was used to estimate the directional stiffness of an HbS molecule and the results were compared to adult human hemoglobin (HbA). The comparison shows a significant difference in strength between HbS and HbA, as well as anisotropic behavior of the hemoglobin molecules. The results also indicated that the HbS molecule experienced more irreversible mechanical behavior than HbA under compression. Further, we have characterized the elastic and compressive properties of a double stranded sickle fiber using six HbS molecules, and it shows that the HbS molecules are bound to each other through strong inter-molecular forces.  相似文献   

17.
An analysis of the mechanics of guard cell motion   总被引:13,自引:0,他引:13  
This paper presents a mechanical analysis of the cellular deformations which occur during the opening and closing of stomata. The aperture of the stomatal pore is shown to be a result of opposing pressures of the guard and adjacent epidermal cells. The analysis indicates that the epidermal cells have a mechanical advantage over the guard cells. With no mechanical advantage, an equal reduction in the turgor pressure of both guard and epidermal cells would have a neglible effect upon stomatal aperture. However, due to the mechanical advantage of the surrounding cells, the stomatal aperture increases with equal reductions in turgor, until the adjacent epidermal cells become flaccid. The minimum diffusion resistance of the pore occurs at this point. Further reductions in guard cell turgor lead to closure of the pore. The analysis further demonstrates how the shape, size, wall thickness and material properties of the guard cell walls influence their behavior.  相似文献   

18.
The mechanical behavior of a living cell is highly dynamic and constantly adapts to its local environment. Changes in temperature and chemical stimuli, such as pH, may alter the structure of the cell and its mechanical response. Thus, the mechanical properties may serve as an indicator for the cellular state. We applied dielectrophoretic forces to suspension cells by means of two microelectrodes. The resultant stretching was analyzed on consecutive cultivation days with respect to the influence of medium consumption. Systematic experiments clearly showed that the medium consumption affected the viscoelastic properties of the investigated human leukemia cells HL-60. The shift in pH value and the culture medium depletion were identified as potentially responsible for the differing temporal development of the cell deformation. Both factors were investigated separately and a detailed analysis indicated that the changes observed in the cellular stiffness were primarily attributable to nutrient depletion.  相似文献   

19.
Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks.  相似文献   

20.
The endothelial glycocalyx (EG) is a complex biopolymer network produced by vascular endothelial cells that forms a layer with multiple functions at the luminal side of blood vessels. The EG acts as an anti-adhesive protection layer, as a molecular sieve, as a chemical sensor site, and as a mechanotransducer of fluid shear stress to the underlying cell layer. A major component involved in these processes is the highly hydrated glycosaminoglycan (GAG) hyaluronan (HA). Here we used laser interferometry to measure the broadband mechanical response of reconstituted HA solutions at close to physiological conditions. HA showed rheological behavior consistent with that of a flexible polymer. The elastic behavior observed for entangled HA networks showed reptational relaxation with a large distribution of time scales, which disappeared quickly (15 min) with the addition of hyaluronidase (HAase). We conclude that the broadband mechanical probing of model systems (HA solutions) provides quantitative data that are crucial to understand the mechanical response of the EG in vivo and its role in mechanosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号