首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

2.
Divalent metals used to support phosphodiesterase (EC 3.1.4.-) activity have been found to influence the substrate and enzyme specificity of many phosphodiesterase inhibitors in studies of the hydrolysis of cyclic AMP and cyclic GMP by the calmodulin-dependent and cyclic AMP-specific phosphodiesterases from bovine heart. Many compounds displayed marked differences in substrate specificity and inhibitory potency in the presence of Mg2+, as compared with Mn2+, when studied with the unactivated form of calmodulin-dependent phosphodiesterase, while few compounds displayed differences in the presence of calmodulin. With a single divalent metal, marked differences in inhibitory potency and substrate specificity were also observed in the absence or presence of calmodulin suggesting that alterations in calmodulin and/or Ca2+ levels may greatly affect the response to phosphodiesterase inhibitors. Divalent metals did not alter the effects of inhibitors on the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase, however divalent metals would probably indirectly influence the relative cellular level of cyclic AMP hydrolyzed by this enzyme, and therefore the effects of inhibitors, through metal effects on the calmodulin-dependent phosphodiesterase. No correlation was found between the inhibitory activity of the compounds, many of which were cyclic nucleotide analogs, and their ability to activate cyclic AMP-dependent or cyclic GMP-dependent protein kinases or to affect cyclic AMP-dependent protein kinase activity by displacing bound cyclic AMP.  相似文献   

3.
A low Km cyclic AMP phosphodiesterase was purified to homogeneity from microsomes of bakers' yeast. "Intact" enzyme, purified from microsomes prepared in the presence of the protease inhibitor phenylmethylsulfonyl fluoride, had a specific activity of 0.6 mumol/min/mg of protein (30 degrees C, pH 8.0, 1 microM cyclic AMP), a pI of 6.65 +/- 0.15, and a molecular weight of 61,000 determined by gel electrophoresis in the presence of sodium dodecyl sulfate. Gel filtration of native enzyme suggested it is a monomer. When phenylmethylsulfonyl fluoride was omitted, a product ("nicked" enzyme) was obtained with a specific activity of 1.2 mumol/min/mg of protein, the same pI, and a similar amino acid composition; but gel electrophoresis now showed two bands, with molecular weights of 45,000 and about 17,000, together with a small amount of the 61,000 band. Apart from the higher specific activity of the nicked enzyme, no difference was found between the catalytic properties of the two enzyme forms. Between 40 nM and 1 microM cyclic AMP, an apparent Km of 170 nM was observed at pH 8.0, but at higher cyclic AMP concentrations (2-30 microM), Hofstee plots curved upwards. Cyclic deoxy-AMP was a substrate, but cyclic GMP was not and did not affect the activity towards cyclic AMP. Both enzyme forms contained tightly bound zinc. The metal chelators, 8-hydroxyquinoline and orthophenanthroline , caused progressive partial inactivation of the enzyme and a decrease in its affinity for cyclic AMP. Dialysis against Zn2+, Cu2+, Co2+, or Mn2+ (but not Mg2+ or Ni2+) reversed these changes.  相似文献   

4.
The relative activity of a zinc-containing cyclic AMP phosphodiesterase towards the (Sp)- compared with the (Rp)-diastereoisomer of cyclic adensine phosphorothioate varied with the identity of the free bivalent metal ion from more than 35 to 0.074 along the series Mg2+ greater than Mn2+ greater than Co2+ greater than Zn2+ greater than Cd2+, showing that this ion, and not the tightly bound zinc, bonds to the phosphorothioate moiety of the substrate.  相似文献   

5.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

6.
The stability constants of complexes of 3', 5'-cyclic AMP with Mg2+, Ca2+, Mn2+, Ni2+ and Co2+ were estimated at 30 degrees C in solutions of ionic strength about 0.15 containing about 130 mM K+ or tetramethylammonium ions. Values between 13 and 22 M-1 were obtained, indicating that only about 2% of cyclic AMP is present as metal complexes in vivo, but that at commonly used in vitro concentrations of 10 mM bivalent metal ions, 10--20% of cyclic AMP is present as metal complexes. The possible significance of these metal complexes, for example as competitive inhibitors, is discussed.  相似文献   

7.
Exceptionally high levels of guanosine 3'-5'-cyclic monophosphate (cyclic GMP) in the accessory reproductive gland of the male house cricket, Acheta domesticus, led to an investigation of cyclic nucleotide phosphodiesterase (EC 3.1.4.--) as a possible regulatory enzyme. Cricket cyclic nucleotide phosphodiesterase activity with cyclic GMP or cyclic AMP as substrate had a pH optimum around 9.0, required Mg2+ or Mn2+ for maximal activity, and was inhibited by EDTA and methylxanthines. Cyclic GMP phosphodiesterase occurred mainly in the soluble fraction of homogenates of accessory glands or whole crickets, but cyclic AMP phosphodiesterase in the accessory gland was primarily particulate. Kinetic analysis indicated three forms of cyclic GMP phosphodiesterase, with Km values at 2.9 muM, 71 muM and 1.5 mM. Chromatography of whole cricket or accessory gland extracts on DEAE cellulose gave an initial peak having comparable activity with either cyclic GMP or cyclic AMP, and a second peak specific for cyclic AMP. There were no appreciable changes in the specific activity or kinetic properties of accessory gland cyclic GMP phosphodiesterase during a developmental period over which cyclic GMP levels rise more than 500-fold. Thus, the accumulation of cyclic GMP in the accessory gland is probably not associated with concomitant developmental modulation of phosphodiesterase activity.  相似文献   

8.
CuCl2 non-competitively inhibited the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent phosphodiesterase from bovine heart in the presence of 5 mM Mg2+, 10 muM Ca2+ and phosphodiesterase activator with Ki values of approximately 2 muM for both substrates. CuCl2 inhibition was also non-competitive with Mg2+, Ca2+ and phosphodiesterase activator. Dialysis demonstrated that CuCl2 inhibition is reversible. Treatment of the enzyme with p-hydroxymercuribenzoate resulted in the loss of enzyme activity, suggesting the presence of sulfhydryl groups essential for enzyme activity. The inhibitory activity of CuCl2 was not additive with that of p-hydroxymercuribenzoate, therefore CuCl2 may inhibit enzyme activity by binding to one or more essential sulfhydryl groups. CuCl2 also inhibited the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase from bovine heart with an I50 value of 18 muM. Several effects of Cu2+ are discussed which have been noted in other studies and might be due, in part, to changes in cyclic nucleotide levels following alterations in phosphodiesterase activity.  相似文献   

9.
Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction; the activities were optimal at pH 8.0-9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2+. A kinetic analysis of the properties of the enzymes yielded 2 apparent K(m) values ranging in concentration from 0.5 to 50 micron and from 0.1 to 62 micron for cyclic AMP and GMP, respectively. A Ca2+ -dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. The results suggested that Tetrahymena might contain 2 types of Ca2+ -dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

10.
Sphingomyelinase (SMase) from Bacillus cereus has been known to be activated by Mg2+, Mn2+, and Co2+, but strongly inhibited by Zn2+. In the present study, we investigated the effects of several kinds of metal ions on the catalytic activity of B. cereus SMase, and found that the activity was inhibited by Zn2+ at its higher concentrations or at higher pH values, but unexpectedly activated at lower Zn2+ concentrations or at lower pH values. This result indicates that SMase possesses at least two different binding sites for Zn2+ and that the Zn2+ binding to the high-affinity site can activate the enzyme, whereas the Zn2+ binding to the low-affinity site can inactivate it. We also found that the binding of substrate to the enzyme was independent of the Zn2+ binding to the high-affinity site, but was competitively inhibited by the Zn2+ binding to the low-affinity site. The binding affinity of the metal ions to the site for activating the enzyme was determined to be in the rank-order of Mg2+ = Co2+ < Mn2+ < Zn2+. It was also demonstrated that these four metal ions competed with each other for the same binding site on the enzyme molecule.  相似文献   

11.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

12.
This study examines the pattern and regulatory properties of cyclic nucleotide phosphodiesterases in a human lymphoblastoid B-cell line (RPMI 8392) established from a patient with acute lymphocytic leukaemia. In this cell line, phosphodiesterase activity measured at 0.25 microM-cyclic AMP is approx. 7-fold greater than that in isolated human peripheral-blood lymphocytes, and 16% of the phosphodiesterase activity in RPMI 8392 cells is associated with particulate fractions. Phosphodiesterase activity in crude fractions of this cell line is reproducibly stimulated by about 60-80% by Ca2+-calmodulin. In the presence of 20 nM-calmodulin, half-maximal stimulation occurs at 0.7 microM-Ca2+. The cytosolic phosphodiesterase activity of RPMI 8392 cells is separated into two forms by DEAE-Sephacel chromatography. The first form is eluted at approx. 0.2 M-sodium acetate, catalyses the hydrolysis of both cyclic AMP and cyclic GMP, and is stimulated 3-fold by Ca2+-calmodulin. This form exhibits non-linear kinetics for cyclic AMP in the absence of calmodulin, with extrapolated Km values of 0.8 and 4 microM, and non-linear kinetics in the presence of calmodulin, with extrapolated Km values of 0.5 and 1 microM. The Vmax. values are increased approx. 3-fold by calmodulin. The second form is eluted at approx. 0.6 M-sodium acetate, is specific for cyclic AMP, and insensitive to stimulation by Ca2+-calmodulin. The Ca2+-calmodulin-sensitive phosphodiesterase from the DEAE-Sephacel column can be adsorbed to a calmodulin-Sepharose affinity column and eluted with EGTA. This enzymic activity can also be immunoprecipitated by a monoclonal antibody directed against a calmodulin-bovine heart phosphodiesterase complex. This study documents the existence of Ca2+-calmodulin-sensitive phosphodiesterase in a cultured lymphoblastoid cell line derived from a leukaemic patient.  相似文献   

13.
Two soluble forms of 3':5'-cyclic-nucleotide phosphodiesterase (o':5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) were found in the larval fat body of the silkmoth Hyalophora cecropia. These differ in elution profile on Sephadex G-200, solubility in ammonium sulfate, metal ion requirements and kinetic properties. Phosphodiesterase I has Km values of 11 muM and 1.8 muM for cyclic AMP and cyclic GMP, respectively, has 5-fold greater maximal activity with cyclic AMP than with cyclic GMP, and is activated by Mg2+ and Co2+, and inhibited by EDTA. phosphodiesterase II has Km values of 625 muM and 125 muM for cyclic AMP and cyclic GMP, respectively, has similar maximal activity with both substrates, and is not activated by divalent metal ions or inhibited by EDTA. Cyclic nucleotides and methylxanthines competitively inhibit both enzymes. Phosphodiesterase is found in both soluble and particulate fractions of homogenates. Total activity is highest during the larval stage of the insect, drops markedly following pupation, and rises again during pharate adult development.  相似文献   

14.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

15.
Most (85% or more) of the cyclic nucleotide phosphodiesterase (3' :5' -cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) activity of pig coronary arteries was found in the 40 000 times g supernatant fraction of homogenates of the intima plus media layer. Chromatography of the soluble fraction of this layer on DEAE-cellulose resolved two phosphodiesterase activities and a heat stable, non-dializable activator. Peak I activity had apparent Km values of 2-4 muM for cyclic GMP and 40-100 muM for cyclic AMP. Peak II activity was relatively specific for cyclic AMP and exhibited apparent negatively cooperative behavior. Peak I but not peak II activity could be stimulated 3-8-fold by the addition of the boiled activator fraction or a boiled crude supernatant fraction. Cyclic AMP hydrolysis by peak I or peak II was more rapid in the presence of Mn-2+ than Mg-2+, but the latter promoted hydrolysis of cyclic GMP by peak I more effectively than did Mn-2+ in the presence of activator. In the absence of added metals, ethylene bis(oxyethylenenitriol)tetra-acetic acid (EGTA) and EDTA both inhibited hydrolysis of cyclic AMP and cyclic GMP by phosphodiesterase activities in the supernatant fraction and in peak I, but EDTA produced more complete inhibition at lower concentrations than did EGTA. Imidazole (1 muM to 10 mM) had virtually no effect on the hydrolysis of cyclic AMP or cyclic GMP catalyzed by either of the two separated peaks or by total phosphodiesterase activities in crude supernatant or particulate fractions.  相似文献   

16.
17.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

18.
Effects of metal ions on sphingomyelinase activity of Bacillus cereus   总被引:5,自引:0,他引:5  
Some divalent metal ions were examined for their effects on sphingomyelinase activity of Bacillus cereus. The enzyme activity toward mixed micelles of sphingomyelin and Triton X-100 proved to be stimulated by Co2+ and Mn2+, as well as by Mg2+. Km's for Co2+ and Mn2+ were 7.4 and 1.7 microM, respectively, being smaller than the Km for Mg2+ (38 microM). Sr2+ proved to be a competitive inhibitor against Mg2+, with a Ki value of 1 mM. Zn2+ completely abolished the enzyme activity at concentrations above 0.5 mM. The concentration of Zn2+ causing 50% inhibition of the enzyme activity was 2.5 microM. Inhibition by Zn2+ was not restored by increasing concentrations of Mg2+ when the concentration of Zn2+ was above 10 microM. Ba2+ was without effect. When sphingomyelinase was incubated with unsealed ghosts of bovine erythrocytes at 37 degrees C, the enzyme was significantly adsorbed onto the membrane in the presence of Mn2+, Co2+, Sr2+ or Ba2+. Incubation with intact or Pronase-treated erythrocytes caused enzyme adsorption only in the presence of Mn2+. In the course of incubation, the enzyme was first adsorbed on the membranes of intact bovine erythrocytes in the presence of Mn2+; then sphingomyelin breakdown proceeded with ensuing desorption of adsorbed enzyme. Hot-cold hemolysis occurred in parallel with sphingomyelin breakdown. In this case, the hydrolysis of membranous sphingomyelin as well as the initial enzyme adsorption took place in the following order: unsealed ghosts greater than Pronase-treated erythrocytes greater than intact erythrocytes.  相似文献   

19.
Binding of 125I-[Nle15]gastrin to albumin purified from porcine serum, from porcine gastric mucosal cytosol, and from bovine serum has been demonstrated by covalent cross-linking and ultracentrifugation. Binding was enhanced in the presence of Zn2+, Ni2+, Cu2+, Co2+, and Cd2+, but not Ca2+, Mg2+, or Mn2+. The best fit to the binding data for bovine serum albumin was obtained with a model assuming two nonequivalent binding sites. The affinity of both sites for gastrin was increased in the presence of 100 microM Zn2+ or Ni2+ ions. The highest association constant observed was 2.3 X 10(5) M-1 in the presence of 100 microM Zn2+ ions. The similarity of the Zn(2+)-dependence of binding for bovine and porcine serum albumins, despite the replacement of His3 by Tyr, suggested that the N-terminal metal ion-binding site was not involved. Although all gastrin affinities were reduced by 50% in the presence of 150 mM NaCl, the Zn(2+)-dependence of binding was retained. We therefore propose that the ternary complex of gastrin, Zn2+ ions, and albumin may play a physiological role in the serum transport of Zn2+ ions and in the uptake of Zn2+ ions from the lumen of the gastrointestinal tract.  相似文献   

20.
Mn2+ and Zn2+ exhibit a striking ability to block the induction by Sn2+ and Ni2+ of haem oxygenase (EC 1.14.99.3) in kidney. The blocking effects of Mn2+ and Zn2+ were found to be greatest on simultaneous administration, time-dependent when administered up to 8 h before the inducing metal ions, and ineffective when administered as little as 10 min after the inducing metal ions. The decreases in cytochrome P-450 and haem contents and the sequential changes in delta-aminolaevulinate synthase (EC 2.3.1.37) activity that occur concomitant with haem oxygenase induction were largely eliminated with simultaneous or prior treatment with Mn2+ or Zn2+, but not when Mn2+ or Zn2+ was administered after Sn2+ or Ni2+. Mn2+ and Zn2+ did not increase the catabolism of the enzyme in vivo. Zn2+ on simultaneous administration was also able substantially to block the induction of haem oxygenase by Co2+, Cd2+ and Ni2+ in liver. The Zn2+ blockade of Cd2+ induction was examined in detail, and prior or simultaneous administration of Zn2+ was found to be effective in blocking the induction of haem oxygenase and the concomitant decreases in cytochrome P-450 and haem contents, ethylmorphine demethylase activity and the sequential changes in delta-aminolaevulinate synthase activity. Zn2+ administration 10 min or more after Cd2+ was ineffective in preventing the occurrence of these perturbations in haem metabolism. These findings describe a new and striking biological property of Mn2+ and Zn2+, and indicate the existence of significant metal ion interactions in the control of haem metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号