首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha3-peptide, which comprises three repeats of the sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala and forms an amphipathic alpha-helix, is unique among various alpha-helix-forming peptides in that it assembles into fibrous structures that can be observed by transmission electron microscopy. As part of our investigation of the structure-stability relationships of the alpha3-peptide, we synthesized the r3-peptide, whose amino acid sequence is the reverse of that of the alpha3-peptide, and we investigated the effects of sequence reversal on alpha-helix stability and the formation of fibrous structures. Unexpectedly, the r3-peptide formed a more-stable alpha-helix and longer fibers than did the alpha3-peptide. The stability of the r3-peptide helix decreased when the ionic strength of the buffer was increased and when the pH of the buffer was adjusted to 2 or 12. These results suggest that the r3-peptide underwent a "magnet-like" oligomerization and that an increase in the charge-distribution inequality may be the driving force for the formation of fibrous structures.  相似文献   

2.
X-ray diffraction was used to study the structure of assemblies formed by synthetic peptide fragments of the prion protein (PrP) that include the hydrophobic domain implicated in the Gerstmann-Str?ussler-Scheinker (GSS) mutation (P102L). The effects of hydration on polypeptide assembly and of Ala-->Val substitutions in the hydrophobic domain were characterized. Synthetic peptides included: (i) Syrian hamster (SHa) hydrophobic core, SHa106-122 (KTNMKHMAGAAAAGAVV); (ii) SHa104-122(3A-V), with A-->V mutations at 113, 115 and 118 (KPKTNMKHMVGVAAVGAVV); (iii) mouse (Mo) wild-type sequence of the N-terminal hydrophobic domain, Mo89-143WT; and (iv) the same mouse sequence with leucine substitution for proline at residue number 101, Mo89-143(P101L). Samples of SHa106-122 that formed assemblies while drying under ambient conditions showed X-ray patterns indicative of 33 A thick slab-like structures having extensive H-bonding and intersheet stacking. By contrast, lyophilized peptide that was equilibrated against 100 % relative humidity showed assemblies with only a few layers of beta-sheets. The Ala-->Val substitutions in SHa104-122 and Mo89-143(P101L) resulted in the formation of 40 A wide, cross-beta fibrils. Observation of similar size beta-sheet fibrils formed by peptides SHa104-122(3A-V) and the longer Mo89-143(P101L) supports the notion that the hydrophobic sequence forms a template or core that promotes the beta-folding of the longer peptide. The substitution of amino acids in the mutants, e.g. 3A-->V and P101L, enhances the folding of the peptide into compact structural units, significantly enhancing the formation of the extensive beta-sheet fibrils.  相似文献   

3.
The serpin (serine proteinase inhibitor) family is of general protein chemical interest because of its ability to undergo large conformational changes, in which the surface-exposed reactive centre loop (RCL) is inserted as strand 4 in the large central beta-sheet A. Loop insertion is an integral part of the inhibitory mechanism and also takes place at conversion of serpins to the latent state, occurring spontaneously only in plasminogen activator inhibitor-1 (PAI-1). We have investigated the importance of beta-strand 5A residues for the activity and latency transition of PAI-1. An approximately fourfold increase in the rate of latency transition resulted from His-substitution of Gln324 (position 334 in the alpha(1)-proteinase inhibitor template numbering), which interacts with the underlying alpha-helix B. The side chains of Gln321 and Lys325 (template residues 331 and 335, respectively) form hydrogen bonds to the peptide backbone of a loop connecting alpha-helix F and beta-strand 3A. While substitution with Ala of Glu321 had only minor effects on the properties of PAI-1, substitution with Ala of Lys325 led to stabilization of the inhibitory activity at incubation conditions leading to conversion of wild-type PAI-1 to a substrate form, and to an anomalous reaction towards a monoclonal antibody, which induced a delay in the latency transition of the mutant, but not wild-type PAI-1. We conclude that the anchoring of beta-strand 5A plays a crucial role in loop insertion. These findings provide new information about the mechanism of an important example of protein conformational changes.  相似文献   

4.
Hillar A  Tripet B  Zoetewey D  Wood JM  Hodges RS  Boggs JM 《Biochemistry》2003,42(51):15170-15178
Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer should result in similar spin-spin interactions for the spin-labeled Cys at both sites.  相似文献   

5.
A strategy has been developed to create repetitive peptides incorporating substitutions in the PGQGQQGYYPTSLQQ consensus repeat sequence of high molecular weight subunits in order to investigate natural sequence variations in elastomeric proteins of wheat gluten. After introduction of glutamic and aspartic acid residues, the peptide behaved similarly to the unmodified form at low pH, but became readily water soluble at pH > 6. Substitution of Gln for Leu at position 13 resulted in only small changes to the secondary structure of the water-insoluble peptides, as did Tyr8His and Thr11Ala. The effects of proline substitutions depended on their location: Leu13Pro substitution had little effect on solubility and structure, but Gln6Pro substitution resulted in dramatic changes. Peptides with two Gln6Pro substitutions had similar properties to the water-insoluble parental peptide, but those with 6 or 10 substitutions were readily soluble. The results indicated that specific sequences influence noncovalent intermolecular interactions in wheat gluten proteins.  相似文献   

6.
The coiled coil is a ubiquitous protein-folding motif. It generally is accepted that coiled coils are characterized by sequence patterns known as heptad repeats. Such patterns direct the formation and assembly of amphipathic alpha-helices, the hydrophobic faces of which interface in a specific manner first proposed by Crick and termed "knobs-into-holes packing". We developed software, SOCKET, to recognize this packing in protein structures. As expected, in a trawl of the protein data bank, we found examples of canonical coiled coils with a single contiguous heptad repeat. In addition, we identified structures with multiple, overlapping heptad repeats. This observation extends Crick's original postulate: Multiple, offset heptad repeats help explain assemblies with more than two helices. Indeed, we have found that the sequence offset of the multiple heptad repeats is related to the coiled-coil oligomer state. Here we focus on one particular sequence motif in which two heptad repeats are offset by two residues. This offset sets up two hydrophobic faces separated by approximately 150 degrees -160 degrees around the alpha-helix. In turn, two different combinations of these faces are possible. Either similar or opposite faces can interface, which leads to open or closed multihelix assemblies. Accordingly, we refer to these two forms as alpha-sheets and alpha-cylinders. We illustrate these structures with our own predictions and by reference to natural variants on these designs that have recently come to light.  相似文献   

7.
We describe a straightforward single-peptide design that self-assembles into extended and thickened nano-to-mesoscale fibers of remarkable stability and order. The basic chassis of the design is the well-understood dimeric alpha-helical coiled-coil motif. As such, the peptide has a heptad sequence repeat, abcdefg , with isoleucine and leucine residues at the a and d sites to ensure dimerization. In addition, to direct staggered assembly of peptides and to foster fibrillogenesisthat is, as opposed to blunt-ended discrete speciesthe terminal quarters of the peptide are cationic and the central half anionic with lysine and glutamate, respectively, at core-flanking e and g positions. This +,-,-,+ arrangement gives the peptide its name, MagicWand (MW). As judged by circular dichroism (CD) spectra, MW assembles to alpha-helical structures in the sub-micromolar range and above. The thermal unfolding of MW is reversible with a melting temperature >70 degrees C at 100 muM peptide concentration. Negative-stain transmission electron microscopy (TEM) of MW assemblies reveals stiff, straight, fibrous rods that extended for tens of microns. Moreover, different stains highlight considerable order both perpendicular and parallel to the fiber long axis. The dimensions of these features are consistent with bundles of long, straight coiled alpha-helical coiled coils with their axes aligned parallel to the long axis of the fibers. The fiber thickening indicates inter-coiled-coil interactions. Mutagenesis of the outer surface of the peptide i.e., at the b and f positionscombined with stability and microscopy measurements, highlights the role of electrostatic and cation-pi interactions in driving fiber formation, stability and thickening. These findings are discussed in the context of the growing number of self-assembling peptide-based fibrous systems.  相似文献   

8.
Ito M  Morii H  Shimizu T  Tanokura M 《Biochemistry》2006,45(10):3315-3324
The dimeric structure of kinesin superfamily proteins plays an important role in their motile functions and characteristics. In this study, the coiled-coil-forming property of the stalk region (192-346) of Drosophila ncd, a C-terminal kinesin motor protein, was investigated by synthesizing various peptide fragments. The alpha helicity of a set of 46-residue peptides spanning the stalk region appeared too low to form a coiled-coil dimer, probably because of insufficient continuity of the hydrophobic residues at (a and d) core positions in amphipathic heptad repeats. On the other hand, several peptides with leucine residues introduced at core positions or with extensional sequences with high alpha helicity had an advantage in coiled-coil formation. When we analyzed the thermal and urea-induced unfolding of these dimeric peptides, we identified four domains having a relatively high potential to form coiled coils. Among them, three domains on the C-terminal side of the stalk region, i.e., (252-272), (276-330), and (336-346), were in the same heptad frame, although these potential coiled-coil domains were not self-sustaining individually. This is in sharp contrast to the fragment of human kinesin, (332-369), which has an extremely high tendency toward coiled-coil formation. One of the possible triggers for coiled-coil formation of the ncd stalk region may be the interaction between the motor domain and the C-terminal part of the stalk as previously revealed by X-ray crystallography. The residues, S331 and R335, seem to act as a breaking point for alpha-helix continuity. This would make the region (336-346), as the head-stalk joint, more flexible such as seen with a plus-end-directed kinesin, if this region had no interaction with the motor domain. These characteristic differences between ncd and kinesin suggest that the nonlocally sustained coiled coil of ncd is one of the factors important for minus-end-directed motility.  相似文献   

9.
The polypeptide alpha3, which was synthesized by us to produce an amphipathic helix structure, contains the regular three times repeated sequence (LETLAKA)(3), and alpha3 forms a fibrous assembly. To clarify how the side chains of amino acid residues affect the formation of alpha helix, Leu residues, which are located in the hydrophobic surface of an amphipathic helix, were replaced by other hydrophobic aliphatic amino acid residues systematically, and the characters of the resulting polypeptides were studied. According to the circular dichroism (CD) spectra, the Ile-substituted polypeptides formed alpha helix like alpha3. However, their helix formation ability was weaker than that of alpha3 under some conditions. The Val-substituted polypeptides formed alpha helix only under restricted condition. The Ala-substituted polypeptides did not form alpha helix under any condition. Thus, it is clear that the order of the alpha helix formation ability is as follows: Leu >or= Ile > Val > Ala. The formation of alpha helix was confirmed by Fourier Transform Infrared (FTIR) spectra. Through electron microscopic observation, it was clarified that the formation of the alpha helix structure correlates with the formation of a fibrous assembly. The amphipathic alpha helix structure would be stabilized by the formation of the fibrous assembly.  相似文献   

10.
Multiple alignment of deduced amino-acid sequences of glucansucrases (glucosyltransferases and dextransucrases) from oral streptococci and Leuconostoc mesenteroides has shown them to share a well-conserved catalytic domain. A portion of this domain displays homology to members of the alpha-amylase family (glycoside hydrolase family 13), which all have a (beta/alpha)8 barrel structure. In the glucansucrases, however, the alpha-helix and beta-strand elements are circularly permuted with respect to the order in family 13. Previous work has shown that amino-acid residues contributing to the active site of glucansucrases are situated in structural elements that align with those of family 13. In alpha-amylase and cyclodextrin glucanotransferase, a histidine residue has been identified that acts to stabilize the transition state, and a histidine is conserved at the corresponding position in all other members of family 13. In all the glucansucrases, however, the aligned position is occupied by glutamine. Mutants of glucosyltransferase I were constructed in which this glutamine, Gln937, was changed to histidine, glutamic acid, aspartic acid, asparagine or alanine. The effects on specific activity, ability to form glucan and ability to transfer glucose to a maltose acceptor were examined. Only histidine could substitute for glutamine and maintain Michaelis-Menten kinetics, albeit at a greatly reduced kcat, showing that Gln937 plays a functionally equivalent role to the histidine in family 13. This provides additional evidence in support of the proposed alignment of the (beta/alpha)8 barrel structures. Mutation at position 937 altered the acceptor reaction with maltose, and resulted in the synthesis of novel gluco-oligosaccharides in which alpha1,3-linked glucosyl units are joined sequentially to maltose.  相似文献   

11.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

12.
Marti DN  Jelesarov I  Bosshard HR 《Biochemistry》2000,39(42):12804-12818
Residues of opposite charge often populate heptad positions g (heptad i on chain 1) and e' (heptad i + 1 on chain 2) in dimeric coiled coils and may stabilize the dimer by formation of interchain ion pairs. To investigate the contribution to stability of such electrostatic interactions we have designed a disulfide-linked heterodimeric zipper (AB zipper) consisting of the acidic chain Ac-E-VAQLEKE-VAQAEAE-NYQLEQE-VAQLEHE-CG-NH(2) and the basic chain Ac-E-VQALKKR-VQALKAR-NYAAKQK-VQALRHK-CG-NH(2) in which all e and g positions are occupied by either E or K/R to form a maximum of seven interhelical salt bridges. Temperature-induced denaturation experiments monitored by circular dichroism reveal a stable coiled coil conformation below 50 degrees C and in the pH range 1.2-8.0. Stability is highest at pH approximately 4.0 [DeltaG(U) (37 degrees C) = 5.18 +/- 0.51 kcal mol(-)(1)]. The solution structure of the AB zipper at pH 5.65 has been elucidated on the basis of homonuclear (1)H NMR data collected at 800 MHz [heavy atom rmsd's for the ensemble of 50 calculated structures are 0.47 +/- 0.13 A (backbone) and 0.95 +/- 0.16 A (all)]. Both chains of the AB zipper are almost entirely in alpha-helical conformation and form a superhelix with a left-handed twist. Overhauser connectivities reveal close contacts between g position residues (heptad i on chain 1) and residues d/f (heptad i on chain 1), residues a/d (heptad i + 1 on chain 1), and residue a' (heptad i + 1 on chain 2). Residues in position e (heptad i on chain 1) are in contact with residues a/b/d/f (heptad i on chain 1) and residue d' (heptad i on chain 2). These connectivities hint at a relatively defined alignment of the side chains across the helix interface. Partial H-bond formation between the functional groups of residues g and e'(+1) is observed in the calculated structures. NMR pH titration experiments disclose pK(a) values for Glu delta-carboxylate groups: 4.14 +/- 0.02 (E(1)), 4.82 +/- 0.07 (E(6)), 4.52 +/- 0.01 (E(8)), 4.37 +/- 0.03 (E(13)), 4.11 +/- 0.02 (E(15)), 4.41 +/- 0.07 (E(20)), 4.82 +/- 0.03 (E(22)), 4.65 +/- 0.04 (E(27)), 4.63 +/- 0.03 (E(29)), 4.22 +/- 0.02 (E(1)(')). By comparison with pK(a) of Glu in unfolded peptides ( approximately 4. 3 +/- 0.1), our pK(a) data suggest marginal or even unfavorable contribution of charged Glu to the stability of the AB zipper. The electrostatic energy gained from interhelical ion pairs is likely to be surpassed by hydrophobic energy terms upon protonation of Glu, due to increased hydrophobicity of uncharged Glu and, thus, better packing against apolar residues at the chain interface.  相似文献   

13.
We have de novo designed a heterodimeric coiled-coil formed by two peptides as a capture/delivery system that can be used in applications such as affinity tag purification, immobilization in biosensors, etc. The two strands are designated as K coil (KVSALKE heptad sequence) and E coil (EVSALEK heptad sequence), where positively charged or negatively charged residues occupy positions e and g of the heptad repeat. In this study, for each E coil or K coil, three peptides were synthesized with lengths varying from three to five heptads. The effect of the chain length of each partner upon the kinetic and thermodynamic constants of interaction were determined using a surface plasmon resonance-based biosensor. Global fitting of the interactions revealed that the E5 coil interacted with the K5 coil according to a simple binding model. All the other interactions involving shorter coils were better described by a more complex kinetic model involving a rate-limiting reorganization of the coiled-coil structure. The affinities of these de novo designed coiled-coil interactions were found to range from 60 pM (E5/K5) to 30 microM (E3/K3). From these K(d) values, we were able to determine the free energy contribution of each heptad, depending on its relative position within the coiled-coils. We found that the free energy contribution of a heptad occupying a central position was 3-fold higher than that of a heptad at either end of the coiled-coil. The wide range of stabilities and affinities for the E/K coil system provides considerable flexibility for protein engineering and biotechnological applications.  相似文献   

14.
We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position.  相似文献   

15.
Moriarty DF  Raleigh DP 《Biochemistry》1999,38(6):1811-1818
Amylin, also known as islet amyloid polypeptide (IAPP), is the major protein component of the fibril deposits found in the pancreas of individuals with type II diabetes. The central region of amylin, residues 20-29, has been implicated as a key determinate of amyloid formation. To establish which positions are most important for amyloid formation, the wild-type sequence of the 20-29 fragment and a set of 10 variants have been synthesized in which a proline was placed at each position. Proline is energetically unfavorable in the extended cross-beta structure found in amyloid. If a particular position is critical for amyloid formation, then substitution with a proline should inhibit amyloid formation. A proline substitution at any position inhibited aggregation and amyloid formation. Substitution of Asn22, Gly24, and residues 26-28 had the largest effect. Fourier transform infrared (FTIR) spectroscopy showed little secondary structure in these peptides, and transmission electron microscopy (TEM) showed mostly amorphous material. The peptides were much more soluble than the wild-type sequence, and no birefringence was observed with Congo Red staining. Proline substitutions at the N (residues 20 and 21) and C termini showed the least effect. These peptides showed the classic fibril morphology, a significant amount of beta-sheet structure, and exhibited green birefringence when stained with Congo Red. The results indicate that residues 22, 24, and 26-28 play a key role in formation of amyloid by amylin. Positions 23 and 25 also appear to be important, but may be less critical than positions 22, 24, and 26-28.  相似文献   

16.
Chugh JK  Brückner H  Wallace BA 《Biochemistry》2002,41(43):12934-12941
Trichotoxin_A50E is an 18-residue peptaibol antibiotic which forms multimeric transmembrane channels through self-association. The crystal structure of trichotoxin has been determined at a resolution of 0.9 A. The trichotoxin sequence contains nine helix-promoting Aib residues, which contribute to the formation of an entirely helical structure that has a central bend of 8-10 degrees located between residues 10-13. Trichotoxin is the first solved structure of the peptaibol family that is all alpha-helix as opposed to containing part or all 3(10)-helix. Gln residues in positions 6 and 17 produce a polar face, and are proposed to form the channel lumen. An octameric model channel has been constructed from the crystal structure. It has a central pore of approximately 4-5 A radius, a size sufficient to enable transport of ions, with a constricted region at one end, formed by a ring of Gln6 residues. Electrostatic calculations are consistent with it being a cationic channel.  相似文献   

17.
The amino acid sequence that forms the alpha-helical coiled coil structure has a representative heptad repeat denoted by defgabc, according to their positions. Although the a and d positions are usually occupied by hydrophobic residues, hydrophilic residues at these positions sometimes play important roles in natural proteins. We have manipulated a few amino acids at the a and d positions of a de novo designed trimeric coiled coil to confer new functions to the peptides. The IZ peptide, which has four heptad repeats and forms a parallel triple-stranded coiled coil, has Ile at all of the a and d positions. We show three examples: (1) the substitution of one Ile at either the a or d position with Glu caused the peptide to become pH sensitive; (2) the metal ion induced alpha-helical bundles were formed by substitutions with two His residues at the d and a positions for a medium metal ion, and with one Cys residue at the a position for a soft metal ion; and (3) the AAB-type heterotrimeric alpha-helical bundle formation was accomplished by a combination of Ala and Trp residues at the a positions of different peptide chains. Furthermore, we applied these procedures to prepare an ABC-type heterotrimeric alpha-helical bundle and a metal ion-induced heterotrimeric alpha-helical bundle.  相似文献   

18.
Dimerization of leucine zippers analyzed by random selection.   总被引:7,自引:1,他引:6       下载免费PDF全文
W T Pu  K Struhl 《Nucleic acids research》1993,21(18):4348-4355
The leucine zipper is a coiled coil that mediates specific dimerization of bZIP DNA-binding domains. A hydrophobic spine involving the conserved leucines runs down the coiled-coil and is thought to stabilize the dimer. We used the method of random selection to further define the primary sequence requirements for homodimer formation and heterodimer formation with Fos. When positions on either side of the hydrophobic spine of GCN4 are diversified to include the corresponding residues of Jun, a large percentage of the resulting sequences form homodimers, and a large percentage form heterodimers with Fos. Basic residues were preferred, but not essential, at position e of zippers which heterodimerize with Fos. When random sequences containing 5 heptad repeat of leucines are subject to a selection for homodimer formation, a diverse set of sequences is isolated. Certain residues are preferred at each position in the heptad repeat, although no essential primary sequence determinants could be identified. No pair of residues not involving the conserved leucines could be identified which strongly promotes homodimerization. These results suggest that factors determining leucine zipper dimerization are complex, with numerous interactions contributing to the association.  相似文献   

19.
Several de novo designed ionic peptides that are able to undergo conformational change under the influence of temperature and pH were studied. These peptides have two distinct surfaces with regular repeats of alternating hydrophilic and hydrophobic side chains. This permits extensive ionic and hydrophobic interactions resulting in the formation of stable beta-sheet assemblies. The other defining characteristic of this type of peptide is a cluster of negatively charged aspartic or glutamic acid residues located toward the N-terminus and positively charged arginine or lysine residues located toward the C-terminus. This arrangement of charge balances the alpha-helical dipole moment (C --> N), resulting in a strong tendency to form stable alpha-helices as well. Therefore, these peptides can form both stable alpha-helices and beta-sheets. They are also able to undergo abrupt structural transformations between these structures induced by temperature and pH changes. The amino acid sequence of these peptides permits both stable beta-sheet and alpha-helix formation, resulting in a balance between these two forms as governed by the environment. Some segments in proteins may also undergo conformational changes in response to environmental changes. Analyzing the plasticity and dynamics of this type of peptide may provide insight into amyloid formation. Since these peptides have dynamic secondary structure, they will serve to refine our general understanding of protein structure.  相似文献   

20.
A leucine residue at position 370 (L370) in 29-4 Shaker K+ channels resides within two overlapping sequence motifs conserved among most voltage-gated channels: the S4 segment and a leucine heptad repeat. Here we investigate the effects observed upon substitution of L370 with many other uncharged amino acid residues. We find that smaller or more hydrophilic residues produce greater alterations in both activation and inactivation gating than does substitution with other large hydrophobic residues. In addition, subunits containing less conservative substitutions at position 370 are restricted in their assembly with wild-type subunits and are unlikely to form homomultimeric channel complexes. Consistent with the idea that L370 influences the tertiary structure of these channels, the results indicate that L370 undergoes specific hydrophobic interactions during the conformational transitions of gating; similar interactions may take place during the folding, insertion, or assembly of Shaker K+ channel subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号