首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   

2.
Pérez  Beatriz  Moreno  José M. 《Plant Ecology》1998,134(1):27-41
The objective of this research was to study the effects of type of fire, prefire-, and postfire-management on the postfire vegetation dynamics of a Pinus pinaster woodland in Central Spain, burned at 15 yr of age. The effects of type of fire (crown-, or surface-fire), prefire-management (thinning out of trees and clearing of brush or no such actions) and postfire-management (removal of burned trees one year after the fire or no such action) on the postfire vegetation were studied during the first three years after the fire. Herbaceous plant abundance, species richness, and diversity, as well as abundance, growth and density of the dominant shrub species (Cistus ladanifer) were measured during the first three years after the fire. Our results show that the effects of the type of fire on the vegetation were minimal. Prefire-management effects were significant on the abundance of herbaceous species, mainly during the second and third year after fire, in particular for the Leguminosae species. Prefire managed areas were more diverse in species, and produced higher plant biomass than unmanaged areas. Postfire-management effects on the shrubs and herbs were minimal, except for the Leguminosae, which increased their cover where the trees had been removed. Plant dynamics were marked by the interaction between prefire-management and fire-type through the dynamics of the shrub cover. On most occasions, plots that resulted in lower cover of C. ladanifer had greater abundance of herbaceous plants and, in particular, of the Leguminosae. In general, our results show that irrespective of fire-type, prefire-, or postfire-management all areas tended to be very similar in their vegetation three years after the fire.  相似文献   

3.
We examined differences in bird communities in relation to characteristics of habitat structure in a pine forest, Samcheok, South Korea. An unburned stand, a stand burned 7 years earlier and then naturally restored, and a stand where Japanese red pine Pinus densiflora seedlings were planted after the fire were used for the survey. Habitat structure was dramatically changed by postfire silvicultural practices. Number of stand trees, shrubs, seedlings, snags, and vegetation coverage were significantly different among study stands. We made 1,421 detections of 46 bird species during 23 separate line transect surveys per stand between February 2007 and December 2008. The mean number of observed bird species and individuals, bird species diversity index (H′), and Simpson’s diversity index (D s) were highest in the unburned stand and lowest in the pine seedling stand. There were more species and individuals of forest-dwelling birds in the unburned stand than both burned stands. Canopy and cavity nesters, foliage searchers, bark gleaners, and timber drillers were significantly higher in the unburned stand. In the pine seedling stand, densities of birds that prefer open field and shrub cover were higher. Stand structure was simplified in the pine seedling stand by postfire practices. Because of differences in habitat structure and bird communities, postfire practices in the burned stand should be re-evaluated. Also, management strategies for pine forest after forest fires are needed based on results of long-term experiments.  相似文献   

4.
Aim We examined relationships between climate–disturbance gradients and patterns of vegetation zonation and ecotones on a subtropical mountain range. Location The study was conducted on the windward slopes of the Cordillera Central, Dominican Republic, where cloud forest appears to shift in a narrow ecotone to monodominant forest of Pinus occidentalis. Methods Climate, disturbance and vegetation data were collected over the elevation range 1100–3100 m and in 50 paired plots along the ecotone. Aerial photographs were georeferenced to a high‐resolution digital elevation model in order to enable the analysis of landscape‐scale patterns of the ecotone. Results A Shipley–Keddy test detected discrete compositional ecotones at 2200 and 2500 m; the distributions of tree species at lower elevations were continuous. The elevation of the ecotone determined with aerial photographs was fairly consistent, namely ± 164 m (SD) over its 124‐km length, but it exhibited significant landscape variation, occurring at a lower elevation in a partially leeward, western zone. The ecotone also occurred significantly lower on ridges than it did in drainage gullies. Ecotone forest structure and composition differed markedly between paired plots. In pine paired plots, the canopy height was 1.7 times higher and the basal area of non‐pine species was 6 times lower than in the cloud forest directly below. Fire evidence was ubiquitous in the pine forest but rare in the abutting cloud forest. Mesoclimate changed discontinuously around the elevation of the ecotone: humidity and cloud formation decreased markedly, and frost frequency increased exponentially. Main conclusions The discreteness of the ecotone was produced primarily by fire. The elevational consistency of the ecotone, however, resulted from the overarching influence of mesoclimate on the elevational patterns of fire occurrence. Declining temperature and precipitation combine with the trade‐wind inversion to create a narrow zone where high‐elevation fires extinguish, enabling fire‐sensitive and fire‐tolerant taxa to abut. Once established, mesotopography and contrasting vegetation physiognomy probably reinforce this boundary through feedbacks on microenvironment and fire likelihood. The prominence of the pine in this study – and of temperate and fire‐tolerant taxa in subtropical montane forests in general – highlights the importance of climate‐disturbance–biogeography interactions in ecotone formation, particularly where fire mediates a dynamic between climate and vegetation.  相似文献   

5.
Postfire vegetation regeneration in many fire-prone ecosystems is soil seed bank dependent. Although vegetation and seed bank may be spatially structured, the role of prefire vegetation patterns and fire in determining postfire vegetation patterns is poorly known. Here, we investigated the spatial patterning of species abundance and richness in the vegetation and seed bank of a Mediterranean encroached dehesa in Central Spain. The seed bank was studied with and without a heat shock simulating a spatially homogeneous fire. Semivariograms and cross-semivariograms showed that species richness in the vegetation was aggregated in patches, mainly of herbs, with highest values corresponding to high herb cover and low tree cover. Species richness in the seed bank was also structured in patches, but the spatial pattern was weak. Seedling density of germinates in the seed bank also showed weak spatial pattern. Heating increased overall germination and species richness, and the intensity of the spatial pattern of species richness, particularly of herbaceous species. However, seed bank density patterns disappeared after heat shock because of increased germination of shrubs without spatial pattern. Our results document that the spatial structure of plant richness in the vegetation may persist after fire due to the spatial patterns of herbaceous species in the seed bank, and that postfire species richness patterns can arise independently of fire intensity patterns. However, the spatial structure of the vegetation after fire can be altered by the feedback between shrub encroachment and an eventual fire because of the ubiquitous germination of shrubs.  相似文献   

6.
Bekker  Matthew F.  Taylor  Alan H. 《Plant Ecology》2001,155(1):15-28
Species distribution and abundance patterns in the southern Cascades are influenced by both environmental gradients and fire regimes. Little is known about fire regimes and variation in fire regimes may not be independent of environmental gradients or vegetation patterns. In this study, we analyze variation in fire regime parameters (i.e., return interval, season, size, severity, and rotation period) with respect to forest composition, elevation, and potential soil moisture in a 2042 ha area of montane forest in the southern Cascades in the Thousand Lakes Wilderness (TLW). Fire regime parameters varied with forest composition, elevation, and potential soil moisture. Median composite and point fire return intervals were shorter (4-9 yr, 14-24 yr) in low elevation and more xeric white fir (Abies concolor)-sugar pine (Pinus lambertiana) and white fir-Jeffrey pine (P. jeffreyi) and longest (20-37 yr, 20-47 yr) in mesic high elevation lodgepole pine (Pinus contorta) and red fir (Abies magnifica)-mountain hemlock (Tsuga mertensiana) forests. Values for mid-elevation red fir-white fir forests were intermediate. The pattern for fire rotation lengths across gradients was the same as for fire return intervals. The percentage of fires that occurred during the growing season was inversely related to elevation and potential soil moisture. Mean fire sizes were larger in lodgepole pine forests (405 ha) than in other forest groups (103-151 ha). In contrast to other parameters, fire severity did not vary across environmental and compositional gradients and >50% of all forests burned at high severity with most of the remainder burning at moderate severity. Since 1905, fire regimes have become similar at all gradient positions because of a policy of suppressing fire and fire regime modification will lead to shifts in landscape scale vegetation patterns.  相似文献   

7.
Abstract. Physiognomic patterns may vary significantly during succession despite a tendency for larger-growth forms to gradually replace smaller ones. Development of understory structure was observed for 25 yr after harvest of Pseudotsuga forests on two sites in the western Cascade Range, Oregon. We examine the influences of disturbance intensity and initial vegetation structure on the origin, direction, and rate of physiognomic change. Broad-scale changes in vegetation structure differed between sites. On Watershed 1, herbs dominated for 11 yr, after which shrubs became co-dominant. In contrast, Watershed 3 never exhibited a distinct, transitional shrub phase - herbs dominated for 18 yr, after which trees assumed co-dominance. The pattern and rate of physiognomic succession also varied among pre-disturbance plant communities and with disturbance intensity. Differences among communities largely corresponded with initial vegetation structure, reflecting the disturbance tolerance of forest herbs and shrubs. Canopy closure occurred most rapidly in the initially depauperate, but tree-dominated Coptis community. Along the disturbance gradient, shifts from herb to shrub dominance occurred earlier on burned than on unburned sites due to rapid development of invading shrubs, whose germination and establishment were stimulated by fire. However, subsequent transitions to tree dominance showed no clear relationship with disturbance intensity. These long-term trends suggest that pre-disturbance community structure and disturbance intensity are major determinants of physiognomic succession, but that their effects may be modified by historical or stochastic factors such as limited seed availability or local fluctuations in weather.  相似文献   

8.
9.
Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7‐fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re‐establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass‐fire cycles may limit these benefits.  相似文献   

10.
Common techniques currently used for afforestation in the Mediterranean basin consider the pre‐existing vegetation (mainly shrubs) as a source of competition for trees, and consequently it is generally eliminated before planting. Nevertheless, it has been demonstrated that woody plants can facilitate the establishment of understory seedlings in environments that, like the Mediterranean area, are characterized by a pronounced dry season. In this study, we experimentally analyze the usefulness of shrubs as nurse plants for afforestation of two native conifers, Pinus sylvestris L. (Scots pine) and Pinus nigra Arnold (black pine). Two‐year‐old seedlings were planted in four microhabitats: (1) open interspaces without vegetation (which is the usual method used in afforestation programs), (2) under individuals of Salvia lavandulifolia, (3) under the north side of spiny shrubs, and (4) under the south side of spiny shrubs. Pine survival was remarkably higher when planted under individuals of the shrub S. lavandulifolia (54.8% for Scots pine, 81.9% for black pine) compared with open areas (21.5% for Scots pine, 56.8% for black pine; chi square, p < 0.05). The survival of both pines was also higher when planted on the north side of spiny shrubs, although the survival on the south side was similar to that found in open areas. In addition, pine growth was not inhibited when planted in association with shrubs. This pattern appears to result from the combination of abiotic conditions imposed by the presence of a nurse shrub, which leads to improvement in seedling water status and therefore reduced summer mortality by drought. The results show that the use of shrubs as nurse plants is a technique that offers both economic and ecological advantages, in terms of savings in labor and plant material and reduced and even negligible impact on the pre‐existing vegetation.  相似文献   

11.
Shrub encroachment occurring worldwide in savannas and grasslands has commonly been hypothesized to result from anthropogenically altered environments. Two disturbance‐based approaches to restoration have involved: (1) application of selective herbicides to reduce density/cover of shrubs; (2) reinstatement of natural fire regimes to generate environmental conditions favoring herbaceous species. We studied short‐term responses of native shrubs, vines, and grasses in a Louisiana pine savanna to herbicides followed by a prescribed fire and fire alone. Plots established in the summer, 2013, were hand‐sprayed in the fall with Imazapyr and Triclopyr, Triclopyr alone, or no herbicide, then prescribed burned the following spring. Numbers of species of shrubs and vines at scales of 1 and 100 m2, numbers of stems and regrowth of stems produced by six common species of shrubs, and the number of flowering culms of perennial C4 grasses were assessed postfire in 2014. Compared with fire alone, herbicides followed by fire resulted in (1) small reductions in species richness of shrubs and no effects on vines, (2) fewer stems comprising shrub genets, but similar postfire regrowth of resprouting shrub stems, and (3) fewer flowering culms of C4 grasses. Underground storage organs of savanna shrubs and vines survived both aboveground disturbances. Thus, single applications of herbicides followed by fires reduced, but did not reverse shrub encroachment and negatively affected grasses. Because effects of herbicides overrode those of prescribed fires, these disturbances did not act synergistically, suggesting that reinstating natural fire regimes should be a priority in restoration of savannas and grasslands.  相似文献   

12.
Population reduction and disturbances may alter dispersal, mating patterns and gene flow. Rather than taking the common approach of comparing different populations or sites, here we studied gene flow via wind‐mediated effective pollen dispersal on the same plant individuals before and after a fire‐induced population drop, in a natural stand of Pinus halepensis. The fire killed 96% of the pine trees in the stand and cleared the vegetation in the area. Thirteen trees survived in two groups separated by ~80 m, and seven of these trees had serotinous (closed) prefire cones that did not open despite the fire. We analysed pollen from closed pre and postfire cones using microsatellites. The two groups of surviving trees were highly genetically differentiated, and the pollen they produced also showed strong among‐group differentiation and very high kinship both before and after the fire, indicating limited and very local pollen dispersal. The pollen not produced by the survivors also showed significant prefire spatial genetic structure and high kinship, indicating mainly within‐population origin and limited gene flow from outside, but became spatially homogeneous with random kinship after the fire. We suggest that postfire gene flow via wind‐mediated pollen dispersal increased by two putative mechanisms: (i) a drastic reduction in local pollen production due to population thinning, effectively increasing pollen immigration through reduced dilution effect; (ii) an increase in wind speeds in the vegetation‐free postfire landscape. This research shows that dispersal can alleviate negative genetic effects of population size reduction and that disturbances might enhance gene flow, rather than reduce it.  相似文献   

13.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

14.
Fire alters the structure and composition of above‐ and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20‐year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late‐successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.  相似文献   

15.
The age, density, distribution and reproductive capacity of Scots pine Pinus sylvestris L. were investigated along an altitudinal gradient through the only undisturbed tree-line remaining in the Cairngorm Mountains. Saplings at 300–410 m a.s.l. were unlikely to develop to reproductive maturity because of repeated browsing by red deer Cervus elaphus L. By contrast, pines were regenerating successfully in scrub at 531–590 m, where the population included individuals of all ages up to 300 yr. Above 590 m, there grew only saplings aged less than 30 yr and these declined in density with increasing altitude up to 730 m.
The climate at 531–590 m was not so severe as to prevent pines from growing to reproductive maturity. However, it may have been severe enough to restrict the activities of large herbivores and so the pine saplings there escaped the heavy browsing suffered by plants at lower altitude. Presumably zones of successfully regenerating pine scrub might occur more widely in the Cairngorms but for a shortage of seed-bearing trees.  相似文献   

16.
We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery. Three of the seven sampled resprouting species had the greatest or near greatest levels of mortality ever recorded when compared to previous studies. Most shrub mortality occurred during the drought after individuals had resprouted (i.e. individuals survived fire, resprouted and then subsequently died). Physiological measurements of species with high mortality suggested that resprout stems were highly embolized and xylem hydraulic conductivities were close to zero during the peak of the drought. In addition, lignotubers of two of the three species experiencing high mortality were depleted of starch. Population densities of most shrub species declined after the drought compared with their prefire levels, with the exception of one drought tolerant obligate seeding species. Resprouting shrub species may deplete their carbohydrate reserves during the resprouting process, making them particularly vulnerable to drought because of the need to transpire water to acquire the CO2 that is used to supply energy to a large respiring root system. Drought appears to interact with fire by altering postfire shrub recovery and altering species abundances and composition of chaparral communities.  相似文献   

17.
In Rocky Mountain forests, fire can act as a mechanism of change in plant community composition if postfire conditions favor establishment of species other than those that dominated prefire tree communities. We sampled pre and postfire overstory and postfire understory species following recent (1988–2006) stand-replacing fires in Glacier National Park (GNP), Montana. We identified changes in relative density of tree species and groups of species (xerophytes vs. mesophytes and reseeders vs. resprouters) in early succession. Postfire tree seedling densities were adequate to maintain prefire forest structure, but relative densities among species were variously changed. Changes were directly related to individual species’ response to severe fires. Most notably, relative density of the mesophytic resprouter quaking aspen (Populus tremuloides) and the xerophytic reseeder lodgepole pine (Pinus contorta) increased substantially following fire, with a concomitant decline in proportional abundance of other tree species that, in some cases, dominated stands before fire. Trends identified in our study suggest that forest community shifts toward those dominated by lodgepole pine and quaking aspen are occurring in GNP. Cover of understory species was not affected by tree species composition or density. These forest communities will likely change throughout succession with the addition of shade-intolerant species in early seral stages and shade-tolerant species later in succession. However, with increased fire frequency, the lodgepole pine-dominated postfire communities observed in our study may become more common throughout time.  相似文献   

18.
The aim of this study was to analyse the regeneration of Pinus pinaster after wildfire and the possible inter and intraspecific competition during the first 3 years after fire. The study area is located in a P. pinaster stand in León province (NW Spain). Three study sites (S1, S2 and S3) were established in an area burned in 1998. In each site, three permanent plots (20 × 1 m) were marked. A total of 20 quadrats of 1 m 2 were studied in each plot. The number and height of pine seedlings 1, 2 and 3 years after fire was recorded in each quadrat. The regeneration of understorey vegetation in the quadrats was analysed concurrently. The significance of linear correlations among the number and height of seedlings and understorey vegetation cover was tested by calculating Pearson correlation coefficients.Seed germination and seedling emergence took place massively during the first year after the fire and decreased through time. The height growth was constant over the 3 years at site S2, while a growth burst could be observed between years 2 and 3 at sites S1 and S2. Also, pines from site S2 reached shorter maximum heights in all years compared to pines from site S1 and S3. The understorey vegetation showed minimal regeneration during the first year but then increased greatly with time. Woody understorey cover and total vegetation cover were negatively correlated with pine seedling density in sites with a high number of seedlings (e.g. S1 and S3). When woody cover, total cover and pine seedling density were low (e.g. S2), there were no correlations. There was a positive correlation between vegetation cover and the maximum height of Pinus seedlings in all study sites.  相似文献   

19.
野火对松属植物的进化和分布有重要的影响。在与野火长期抗争中,松属植物形成了一系列性状提高在易火生境中的适合度,维持种群生存与繁衍。西南地区是中国野火高发区,作为这一地区特有松树,云南松、思茅松和高山松具有一些典型的火适应性状,如厚树皮。以这3种松树和东部常见的马尾松为研究对象,比较4种松树的火适应对策。结果表明:4种松树的火适应性状存在一定的差异。与火适应相关的13项性状主成分分析显示,4个种在空间上总体是分离的,也表现出一些重叠。其中云南松火适应生活史对策是火耐受型和火依赖型的中间类型,适应会发生林冠火的生境。高山松、思茅松和马尾松都是火耐受型,通过快速高生长、厚树皮等性状适应生境不同频度的地表火。四种松树火适应对策与分布区火险基本相符。表明野火在这一区域广泛存在,并对植物进化和森林格局有重要影响。野火在西南地区松属分布和种群维持中的生态作用应被给予足够重视。  相似文献   

20.
Abstract. Rates and directions of change over a 20-yr interval in five long-unburned (> 60 yr) plant communities were studied using multivariate analyses and compositional vectors. The study sites were located in fire and summer-drought adapted, xerophytic vegetation with many endemics on acidic, nutrient-poor, sandy soils in south-central peninsular Florida. Sizes of individual stems from 72 sets of nested permanent quadrats were measured in 1969, 1979, and 1989. Patterns of vegetation change differed by community. Flatwood and bayhead quadrats showed rapid increases in densities and basal areas of Persea borbonia (red bay). In the southern ridge sandhill community, evergreen clonal Quercus species (oaks) and Pinus clausa (sand pine) increased in dominance and grasses declined. Oaks (especially Q. geminata) also increased in importance in scrubby flatwoods. Sand pine scrub was relatively stable in composition, but experienced marked structural changes due to substantial sand pine mortality (18% during 1969–1979, 39% during 1979–1989). Compositional changes in the absence of fire were greatest whereas structural changes were least in southern ridge sandhill and scrubby flatwoods, both communities which normally receive frequent, recurrent fire. Compositional changes were lowest in sand pine scrub, which is normally infrequently burned. Classic successional patterns such as species replacement, decreases in density, and increases in basal area were generally lacking. Tree densities increased in two of four community types (southern ridge sandhill, scrubby flatwoods); while basal area declined in the flatwoods/bayhead and sand pine scrub sites. Directions of compositional vectors included divergent, opposing, and complex patterns, suggesting vegetation change in the absence of fire has a strong stochastic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号