首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Day DA  Hanson JB 《Plant physiology》1977,59(2):139-144
A study was made to determine conditions under which malate oxidation rates in corn (Zea mays L.) mitochondria are limited by transport processes. In the absence of added ADP, inorganic phosphate increased malate oxidation rates by processes inhibited by mersalyl and oligomycin, but phosphate did not stimulate uncoupled respiration. However, the uncoupled oxidation rates were inhibited by butylmalonate and mersalyl. When uncoupler was added prior to substrate, subsequent O2 uptake rates were reduced when malate and succinate, but not exogenous NADH, were used. Uncoupler and butylmalonate also inhibited swelling in malate solutions and malate accumulation by these mitochondria, which were found to have a high endogenous phosphate content. Addition of uncoupler after malate or succinate produced an initial rapid oxidation which declined as the mitochondria lost solute and contracted. This decline was not affected by addition of ADP or AMP, and was not observed when exogenous NADH was substrate. Increasing K+ permeability with valinomycin increased the P-trifluoromethoxy (carboxylcyanide)phenyl hydrazone inhibition. Kinetic studies showed the slow rate of malate oxidation in the presence of uncoupler to be characterized by a high Km and a low Vmax, probably reflecting a diffusion-limited process.  相似文献   

2.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

3.
The participation and energy dependence of the malate-aspartate shuttle in transporting reducing equivalents generated from cytoplasmic lactate oxidation was studied in isolated hepatocytes of fasted rats. Both lactate removal and glucose synthesis were inhibited by butylmalonate, aminooxyacetate or cycloserine confirming the involvement of malate and aspartate in the transfer of reducing equivalents from the cytoplasm to mitochondria. In the presence of ammonium ions the inhibition of lactate utilization by butylmalonate was considerably reduced, yet the transfer of reducing equivalents into the mitochondria was unaffected, indicating a substantially lesser role for butylmalonate-sensitive malate transport in reducing-equivalent transfer when ammonium ions were present. Ammonium ions had no stimulatory effect on uptake of sorbitol, a substrate whose oxidation principally involves the alpha-glycerophosphate shuttle. The role of cellular energy status (reflected in the mitochondrial membrane electrical potential (delta psi) and redox state), in lactate oxidation and operation of the malate-aspartate shuttle, was studied using a graded concentration range of valinomycin (0-100 nM). Lactate oxidation was strongly inhibited when delta psi fell from 130 to 105 mV whereas O2 consumption and pyruvate removal were only minimally affected over the valinomycin range, suggesting that the oxidation of lactate to pyruvate is an energy-dependent step of lactate metabolism. Our results confirm that the operation of the malate-aspartate shuttle is energy-dependent, driven by delta psi. In the presence of added ammonium ions the removal of lactate was much less impaired by valinomycin, suggesting an energy-independent utilization of lactate under these conditions. The oxidizing effect of ammonium ions on the mitochondrial matrix apparently alleviates the need for energy input for the transfer of reducing equivalents between the cytoplasm and mitochondria. It is concluded that, in the presence of ammonium ions, the transport of lactate hydrogen to the mitochondria is accomplished by malate transfer that is not linked to the electrogenic transport of glutamate across the inner membrane, and, hence, is clearly distinct from the butylmalonate-sensitive, energy-dependent, malate-aspartate shuttle.  相似文献   

4.
It has been shown that KM values for ADP when rat liver mitochondria oxidized succinate were strictly dependent on the values of the respiratory control ratios. The Ki values for palmitoyl-CoA inhibition of the ADP-stimulated succinate oxidation and the inhibition of the uncoupler-stimulated ATPase activity were equal to 0.5 muM. Mitochondria from livers of starved rats showed 30% inhibition of the state 3 respiratory rate (compared to the uncoupled respiratory rate) which was abolished by addition of carnitine. It was supposed that this inhibition was due to the influence of acyl-CoAs bound to the inner mitochondrial membrane on the adeninenucleotide translocase. Mitochondria from livers of fed rats showed a strong inhibition of succinate oxidation both in state 4 and state 3, although the rate of uncoupled respiration was normal. It was assumed that in this case the changes in mitochondrial behaviour was caused by the decrease in the concentration of ADP and ATP in the matrix space of mitochondria.  相似文献   

5.
Following the application of high pressure to skeletal muscle for extended periods, intracristal structures are found in the mitochondria. In addition, electron dense granules of 70–170 nm diameter are found in the matrix of these mitochondria. In contrast, pressure-treated liver mitochondria show only large (300–400 nm) matrix granules but not the intracristal structures. Both the inner and outer mitochondrial membranes appear intact after pressure-treatment. Short periods of pressuretreatment have little effect on either the morphology of mitochondria or the pH of the tissues. It is suggested that the formation of the intracristal structures may be due to the effects of pH rather than pressure alone. This finding raises the possibility that intracristal structures may occur as a preparative artefact particularly where the tissue has undergone considerable manipulation.  相似文献   

6.
Ordered arrays of structured material were visualized in the intracristal space of isolated beef heart mitochondria in two ways. Under standard conditions of fixation, structured material in the intracristal space appeared as paracrystalline arrays nestled between two apposing membranes. When mitochondria were preincubated with phosphotungstic acid (PTA) prior to fixation, the structures in the mitochondrial intracristal space took on an open lattice structure. Such structures, either paracrystalline or lattice, could not be demonstrated in the mitochondrial matrix space under these conditions.Pretreatment with PTA prior to fixation increased greatly the frequency with which structured material was observed within the mitochondrial intracristal space. Visualization of the PTA-induced lattice structures appeared to be pH dependent, being most clearly seen between pH 7·0 and 7·5. Above pH 7·5, lattice structures could not be seen, whereas at pH values below 7·0, the observed structures in the intracristal space no longer retained an organized lattice structure but became amorphous. Increasing the concentration of PTA from 0·1% to 3·5% or the incubation time from 5 sec to 1 h did not significantly alter the frequency of observation of lattice structures, as long as the mitochondrial preincubation with PTA was carried out between pH 7·0 and 7·5.  相似文献   

7.
Calcium uptake into filipin-treated bovine spermatozoa is completely inhibited by the uncoupler CCCP or by ruthenium red. Both Pi and mitochondrial substrates are required to obtain the maximal rate of calcium uptake into the sperm mitochondria. Bicarbonate and other anions such as lactate, acetate or beta-hydroxybutyrate do not support a high rate of calcium uptake. There are significant differences among various mitochondrial substrates in supporting calcium uptake. The best substrates are durohydroquinone, alpha-glycerophosphate and lactate. Pyruvate is a relatively poor substrate, and its rate can be greatly enhanced by malate or succinate but not by oxalacetate or lactate. This stimulation is blocked by the dicarboxylate translocase inhibitor, butylmalonate and can be mimiced by the non-metabolized substrate D-malate. The Ka for pyruvate was found to be 17 microM and 67 microM in the presence and absence of L-malate, respectively. The Ka for L-malate is 0.12 mM. It is suggested that in addition to the known pyruvate/lactate translocase there is a second translocase for pyruvate which is malate/succinate-dependent and does not transport lactate. In the presence of succinate, glutamate stimulates calcium uptake 3-fold, and this effect is not inhibited by rotenone. In the presence of glutamate plus malate or oxalacetate there is only an additive effect. It is suggested that glutamate stimulates succinate transport and/or oxidation in bovine sperm mitochondria. The alpha-hydroxybutyrate is almost as good as lactate in supporting calcium uptake. Since the alpha-keto product is not further metabolized in the citric acid cycle, it is suggested that lactate can supply the mitochondrial needs for NADH from its oxidation to pyruvate by the sperm lactate dehydrogenase x. Thus, when there is sufficient lactate in the sperm mitochondria, pyruvate need not be further metabolized in the citric acid cycle in order to supply more NADH.  相似文献   

8.
Electron microscopy shows that intact mitochondria can be isolated from neck-muscle stored at 144h post-mortem at 4°. Isolated mitochondria, all in the condensed configuration, have clearly defined outer and inner membranes, outer compartments and intracristal spaces; a larger proportion of swollen ones was isolated from the 144h than from the 120 h post-mortem tissue.Mitochondria from 96 h tissue still retained the following % of the initial values for the ADP/O ratio, respiratory control index (RCI) and state 3 respiratory rate observed for 0–5h tissue: malate+pyruvate, 100, 72 and 53; succinate, 80, 30 and 74; ascorbate+ tetramethyl-p-phenylencdiamine (TMPD), 92, 88 and 72.Both the succinate and ascorbate-TMPD oxidase systems appear to have a critical storage time of about 70 h, whereas the malate+pyruvate system has one of about 96 h. Asharp decline of the ADP/O ratio, RCI and the state 3 respiratory rate occurred after this time, but these three parameters were better preserved in the ascorbate-TMPD oxidase system.The oxidation of the citric acid cycle intermediates in the neck-muscle mitochondria thus shows a higher sensitivity to post-mortem ageing with respect to cytochrome oxidase activity. This is probably due to post-mortem muscle acidification.  相似文献   

9.
Summary Addition of dimethyl sulfoxide (DMSO) to the cytochemical incubation medium for succinate dehydrogenase was attempted to accelerate penetration with consequent shortening of the incubation time. The copper-ferrocyanide medium for demonstration of succinate dehydrogenase activity was applied to fresh and hydroxyadipaldehyde-fixed muscle of the hamster and mouse and the albumen secreting gland cells of the hen oviduct. Cytochemical evidence indicated that DMSO did not seem to inhibit this enzymatic activity. With a shorter incubation time, less heterogeneity in reaction product was obtained in the mitochondria of muscle. The marked heterogeneity found in the reaction in the intracristal space of mitochondria also was diminished with addition of DMSO to the medium. The gland cells, whose ultrastructure was not well preserved with prolonged incubation, showed reductase reaction with the DMSO-containing medium.  相似文献   

10.
Water movement from intracristal spaces in isolated liver mitochondria   总被引:1,自引:0,他引:1  
When analyzing mitochondria isolated in a sucrose medium that had been embedded for thin sectioning according to one low denaturation embedding technique, large intracristal spaces were present in close to 90% of the mitochondria. The two crista membranes were closely apposed in only 40% of all cristae. When the mitochondria were transferred to an incubation medium, the percentage of mitochondria with intracristal spaces was reduced to 40%. About 90% of all cristae were lacking any space separating the two crista membranes. The presence of inorganic phosphate in the medium was required for the closing of the intracristal spaces. The percentage of cristae lacking an intracristal space remained the same after addition of substrate for respiration (state 4) and of ADP (state 3). Inhibition or uncoupling of respiration led to an increase in the percentage of intracristal spaces, showing that oxidative phosphorylation is required to maintain the crista membranes closely apposed. The appearance and disappearance of the intracristal spaces was an indication of water movements across the crista membranes. The mean volume of the mitochondria increased 33% when they were transferred from the sucrose medium to the incubation medium, showing that the removal of water from the cristae was not caused by a passive osmotic effect. Addition of substrate made the volume decrease by 28%. After further addition of ADP, the volume decreased another 23%. No change in volume was associated with inhibition or uncoupling of respiration. The observations revealed that water can move into or out of the cristae independently of water movement out from the entire mitochondrion. Therefore, the water moving out from or into the cristae is translocated across the cristae membrane. The observations are interpreted to reveal the presence of a mechanism that actively prevents water from accumulating in the crista membrane. This mechanism allows for a low water activity to be maintained within the membrane. The variations in the frequency of intracristal spaces occurred without any simultaneous changes in the width of the space appearing between the two surface membranes after isolation of the mitochondria. The observations, therefore, do not agree with the concept that there is an outer compartment that communicates freely with intracristal spaces.  相似文献   

11.
The transport of sulphate and sulphite in rat liver mitochondria   总被引:4,自引:2,他引:4       下载免费PDF全文
1. The mechanism of sulphite and sulphate permeation into rat liver mitochondria was investigated. 2. Extramitochondrial sulphite and sulphate elicit efflux of intramitochondrial phosphate, malate, succinate and malonate. The sulphate-dependent effluxes and the sulphite-dependent efflux of dicarboxylate anions are inhibited by butylmalonate, phenylsuccinate and mersalyl. Inhibition of the phosphate efflux produced by sulphite is caused by mersalyl alone and by N-ethylmaleimide and butylmalonate when present together. 3. External sulphite and sulphate cause efflux of intramitochondrial sulphate, and this is inhibited by butylmalonate, phenylsuccinate and mersalyl. 4. External sulphite and sulphate do not cause efflux of oxoglutarate or citrate. 5. Mitochondria swell when suspended in an iso-osmotic solution of ammonium sulphite; this is not inhibited by N-ethylmaleimide or mersalyl. 6. Low concentrations of sulphite, but not sulphate, produce mitochondrial swelling in iso-osmotic solutions of ammonium malate, succinate, malonate, sulphate, or phosphate in the presence of N-ethylmaleimide. 7. It is concluded that both sulphite and sulphate may be transported by the dicarboxylate carrier of rat liver mitochondria and also that sulphite may permeate by an additional mechanism; the latter may involve the permeation of sulphurous acid or SO(2) or an exchange of the sulphite anion for hydroxyl ion(s).  相似文献   

12.
The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.  相似文献   

13.
1. Increasing the substrate concentration only decreased the inhibition of mitochondrial oxidations by diphenyleneiodonium or by 2,4-dichlorophenyleneiodonium by a small amount. 2. Diphenyleneiodonium and 2,4-dichlorodiphenyleneiodonium lowered the amounts of succinate, citrate and glutamate accumulated in the matrix of mitochondria in the presence of Cl-, but not in its absences. 2,4-Dichlorodiphenyleneiodonium decreased the accumulation of substrates by mitochondria oxidizing glycerol 3-phosphate. 3. Diphenyleneiodonium caused an alkalinization of the medium with an anaerobic suspension of mitochondria, which was only partly reversed by Triton X-100. 4. The rate of proton extrusion by mitochondria oxidizing succinate was not altered by diphenyleneiodonium or by 2,4-dichlorodiphenyleneiodium, although the rate of decay of proton pulses was increased. 5. 2,4-Dichlorodiphenyleneiodonium shifted the pH optimum for succinate oxidation by intact mitochondria from pH 7.2 to 8.0, whereas there was no effect on that of freeze-thawed mitochondria, which was pH 8.0. 6. The concentration of 2,4-dichlorophenyleneiodonium required to inhibit respiration by 50% is less the higher the absolute rate of oxygen uptake. 7. EDTA, but not EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid] increased the inhibition of respiration by diphenyleneiodonium, 2,4-dichlorodiphenyleneiodonium and by tri-n-propyltin. 8. It is concluded that diphenyleneiodonium and 2,4-dichlorodiphenyleneiodonium limit respiration in Cl--containing medium by causing an acidification of the matrix, and that there are pH-sensitive sites in the respiratory chain between NADH and succinate, and between succinate and cytochrome c.  相似文献   

14.
Payne G  Kono Y  Daly JM 《Plant physiology》1980,65(5):785-791
NADH or succinate oxidation and malate oxidation were differentially affected in mitochondria from both susceptible and resistant corn by a purified and chemically characterized preparation of host-specific toxin from Bipolaris (Helminthosporium) maydis, race T. NADH and succinate oxidation by susceptible T corn mitochondria were stimulated 50 to 200% with apparent uncoupling from the cytochrome chain at approximately 10(-9)m toxin (5 to 20 ng/ml). Significant inhibition of malate oxidation was observed at slightly higher toxin concentrations, but oxidation was still coupled to ADP utilization. Inhibition of malate oxidation also was observed in N corn (resistant) and soybean mitochondria at approximately 1,000-fold greater concentrations, but stimulation of NADH and succinate oxidation was not found at any toxin concentration tested.A fully acetylated toxin derivative at approximately 1 microgram per milliliter also caused stimulation of NADH or succinate oxidation in T corn mitochondria, but not those of N corn or soybean mitochondria at 100 micrograms per milliliter. Malate oxidation was inhibited to the same extent by toxin acetate with mitochondria from T corn, N corn, and soybean. The blocking of hydroxyl groups in race T toxin by acetyl functions eliminated selectivity toward malate oxidation only. The data suggest that inhibition of malate oxidation is either a separate or secondary effect of selective action of toxin on T corn mitochondria, perhaps by interference with transport in or out of the matrix. Sensitivity of T, but not N, corn mitochondria to purified toxin decays within minutes after pellets are suspended in aqueous osmotica, with no obvious change in mitochondrial integrity. The action of race T toxin seems to involve a labile process, such as ion gradient(s), or an unstable structural conformation of T corn mitochondria.  相似文献   

15.
The inhibition of NADH oxidation but not of succinate oxidation by the low ubiquinone homologs UQ-2 and UQ-3 is not due to a lower rate of reduction of ubiquinone by NADH dehydrogenase: experiments in submitochondrial particles and in pentane-extracted mitochondria show that UQ-3 is reduced at similar rates using either NADH or succinate as substrates. The fact that reduced UQ-3 cannot be reoxidized when reduced by NADH but can be reoxidized when reduced by succinate may be explained by a compartmentation of ubiquinone.Using reduced ubiquinones as substrates of ubiquinol oxidase activity in intact mitochondria and in submitochondrial particles we found that ubiquinol-3 is oxidized at higher rates in submitochondrial particles than in mitochondria. The initial rates of ubiquinol oxidation increased with increasing lengths of isoprenoid side chains in mitochondria, but decreased in submitochondrial particles. These findings suggest that the site of oxidation of reduced ubiquinone is on the matrix side of the membrane; reduced ubiquinones may reach their oxidation site in mitochondria only crossing the lipid bilayer: the rate of diffusion of ubiquinol-3 is presumably lower than that of ubiquinol-7 due to the differences in hydrophobicity of the two quinones.  相似文献   

16.
1. The effects of succinate oxidation on pyruvate and also isocitrate oxidation by rat liver mitochondria were studied. 2. Succinate oxidation was without effect on pyruvate and isocitrate oxidation when respiration was maximally activated with ADP. 3. When respiration was partially inhibited by atractylate, succinate oxidation severely inhibited the oxidation of pyruvate and isocitrate. 4. This inhibitory effect of succinate was associated with a two- to three-fold increase in the reduction of mitochondrial NAD(+) but no change in the reduction of cytochrome b. 5. It is concluded that, in the partially energy-controlled state, respiration is more severely inhibited at the first phosphorylating site than at the other two. 6. The effects of succinate oxidation are compared with those of palmitoylcarnitine oxidation. It is concluded that a rapid flow of electrons directly into the respiratory chain at the level of cytochrome b is in itself inadequate to inhibit the oxidation of intramitochondrial NADH. 7. The effects of succinate oxidation on pyruvate oxidation were similar in rat heart and liver mitochondria.  相似文献   

17.
The following stereological parameters of mitochondria were calculated in rat germ cells during the spermatogenesis: volume density of matrix, outer compartment, outer membrane and inner membrane, surface density of outer membrane and inner membrane. They were the basis to calculate the partition coefficient of matrix and partition coefficient of outer compartment. The matrix volume demonstrated a decreasing in mitochondria of germ cells during spermatogenesis. The relative volume of outer compartment was calculated with the intracristal spaces and revealed increasing from spermatogonia to spermatids. The partition coefficient for the matrix significantly decreased. Our observations suggest that transformation of mitochondrial configuration during spermatogenesis and spermiogenesis is the expression of intensive metabolic processes and activity of membrane transport in germ cells.  相似文献   

18.
Methylmalonate and propionate, the major metabolites of the propionate pathway of fatty and amino acid metabolism used at 1-4 mM cause selective inhibition of succinate and palmitoyl carnitine oxidation in liver mitochondria. Methylmalonate is more specific towards succinate, whereas propionate--towards palmitoyl carnitine oxidation. Methylmalonate is transported to mitochondria at a high rate with no effect on succinate transport. Being injected intramusculary methylmalonate has no inhibiting effect on the oxidative activity of mitochondria but is able to activate succinate and palmitoyl carnitine oxidation. The inhibiting effect of propionate on palmitoyl carnitine oxidation is a long-term one. Injections of these metabolites precursors, isoleucine, methionine and valine, produce an activating effect on succinate oxidation. Thus, propionate pathway metabolites may participate in the regulation of lipid-carbohydrate metabolism.  相似文献   

19.
Laties GG 《Plant physiology》1983,72(4):953-958
The oxidation isotherms for citrate and isocitrate by potato (Solanum tuberosum var. Russet Burbank) mitochondria in the presence of NAD differ markedly. Citrate oxidation shows positively cooperative kinetics with a sigmoid isotherm, whereas isocitrate oxidation shows Michaelis-Menten kinetics at concentrations up to 3 millimolar, and cooperative kinetics thereafter up to 30 millimolar. In the absence of exogenous NAD, the isocitrate isotherm is sigmoid throughout. The dual isotherm for isocitrate oxidation in the presence of exogenous NAD reflects the operation of two forms of isocitrate dehydrogenase, one in the matrix and one associated with the inner mitochondrial membrane. Whereas in intact mitochondria the activity of the membrane-bound enzyme is insensitive to rotenone, and to butylmalonate, an inhibitor of organic acid transport, isocitrate oxidation by the soluble matrix enzyme is inhibited by both. The membrane-bound isocitrate dehydrogenase does not operate through the NADH dehydrogenase on the outer face of the inner mitochondrial membrane, and is thus considered to face inward. The regulatory potential of isocitrate dehydrogenase in potato mitochondria may be realized by the apportionment of the enzyme between its soluble and bound forms.  相似文献   

20.
The changes in isolated rat liver mitochondria induced by protamine or gramicidin and by protamine plus gramicidin have been investigated electron microscopically. The results are as follows:
1.
1. Inhibition of succinate (plus rotenone) oxidation induced by protamine caused mitochondrial shrinkage with collapse of outer and inner lamina of mitochondrial membrane and of cristae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号