首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Bacillus subtilis ResD-ResE two-component signal transduction system is essential for aerobic and anaerobic respiration. A spontaneous suppressor mutant that expresses ResD-controlled genes and grows anaerobically in the absence of the ResE histidine kinase was isolated. In addition, aerobic expression of ResD-controlled genes in the suppressed strain was constitutive and occurred at a much higher level than that observed in the wild-type strain. The suppressing mutation, which mapped to pgk, the gene encoding 3-phosphoglycerate kinase, failed to suppress a resD mutation, suggesting that the suppressing mutation creates a pathway for phosphorylation of the response regulator, ResD, which is independent of the cognate sensor kinase, ResE. The pgk-1 mutant exhibited very low but measurable 3-phosphoglycerate kinase activity compared to the wild-type strain. The results suggest that accumulation of a glycolytic intermediate, probably 1, 3-diphosphoglycerate, is responsible for the observed effect of the pgk-1 mutation on anaerobiosis of resE mutant cells.  相似文献   

5.
6.
7.
8.
9.
Two Bacillus subtilis genes, designated resD and resE, encode proteins that are similar to those of two-component signal transduction systems and play a regulatory role in respiration. The overlapping resD-resE genes are transcribed during vegetative growth from a very weak promoter directly upstream of resD. They are also part of a larger operon that includes three upstream genes, resABC (formerly orfX14, -15, and -16), the expression of which is strongly induced postexponentially. ResD is required for the expression of the following genes: resA, ctaA (required for heme A synthesis), and the petCBD operon (encoding subunits of the cytochrome bf complex). The resABC genes are essential genes which encode products with similarity to cytochrome c biogenesis proteins. resD null mutations are more deleterious to the cell than those of resE. resD mutant phenotypes, directly related to respiratory function, include streptomycin resistance, lack of production of aa3 or caa3 terminal oxidases, acid accumulation when grown with glucose as a carbon source, and loss of ability to grow anaerobically on a medium containing nitrate. A resD mutation also affected sporulation, carbon source utilization, and Pho regulon regulation. The data presented here support an activation role for ResD, and to a lesser extent ResE, in global regulation of aerobic and anaerobic respiration i B.subtilis.  相似文献   

10.
11.
12.
The Bacillus subtilis Pho signal transduction network, which regulates the cellular response to phosphate starvation, integrates the activity of three signal transduction systems to regulate the level of the Pho response. This signal transduction network includes a positive feedback loop between the PhoP/PhoR and ResD/ResE two-component systems. Within this network, ResD is responsible for 80% of the Pho response. To date, the role of ResD in the generation of the Pho response has not been understood. Expression of two terminal oxidases requires ResD function, and expression of at least one terminal oxidase is needed for the wild-type Pho response. Previously, our investigators have shown that strains bearing mutations in resD are impaired for growth and acquire secondary mutations which compensate for the loss of the a-type terminal oxidases by allowing production of cytochrome bd. We report here that the expression of cytochrome bd in a DeltaresDE background is sufficient to compensate for the loss of ResD for full Pho induction. A ctaA mutant strain, deficient in the production of heme A, has the same Pho induction phenotype as a DeltaresDE strain. This demonstrates that the production of a-type terminal oxidases is the basis for the role of ResD in Pho induction. Terminal oxidases affect the redox state of the quinone pool. Reduced quinones inhibit PhoR autophosphorylation in vitro, consistent with a requirement for terminal oxidases for full Pho induction in vivo.  相似文献   

13.
14.
15.
16.
17.
Recombinant E. coli strains expressing the Bacillus cereus ATCC 14579T resD and resE genes fused with the ubiquitin gene were constructed, and purification of the ResD and ResE proteins was performed. The approach used in the study allowed us to increase the protein yield of the electrophoretic homogeneous ResD and ResE proteins without denaturation steps up to 150 mg per gram of wet cell weight.  相似文献   

18.
The resABCDE operon of Bacillus subtilis encodes a three-protein complex involved in cytochrome c biogenesis as well as the ResE sensor kinase and the ResD response regulator that control electron transfer and other functions in response to oxygen availability. We have investigated the mechanism of CcpA-mediated control of res operon expression which occurs maximally in the stationary phase of growth. Two CcpA-binding (CRE) sites were found in the res operon, one (CRE1) in the control region in front of the resA promoter, the other (CRE2) in the resB structural gene. Both CRE sites proved to be essential for full CcpA-mediated glucose repression of res operon expression. We propose that both looping and road block mechanisms are involved in res operon control by CcpA.  相似文献   

19.
Genes coding for putative RegA, RegB, and SenC homologues were identified and characterized in the purple nonsulfur photosynthetic bacteria Rhodovulum sulfidophilum and Roseobacter denitrificans, species that demonstrate weak or no oxygen repression of photosystem synthesis. This additional sequence information was then used to perform a comparative analysis with previously sequenced RegA, RegB, and SenC homologues obtained from Rhodobacter capsulatus and Rhodobacter sphaeroides. These are photosynthetic bacteria that exhibit a high level of oxygen repression of photosystem synthesis controlled by the RegA-RegB two-component regulatory system. The response regulator, RegA, exhibits a remarkable 78.7 to 84.2% overall sequence identity, with total conservation within a putative helix-turn-helix DNA-binding motif. The RegB sensor kinase homologues also exhibit a high level of sequence conservation (55.9 to 61.5%) although these additional species give significantly different responses to oxygen. A Rhodovulum sulfidophilum mutant lacking regA or regB was constructed. These mutants produced smaller amounts of photopigments under aerobic and anaerobic conditions, indicating that the RegA-RegB regulon controls photosynthetic gene expression in this bacterium as it does as in Rhodobacter species. Rhodobacter capsulatus regA- or regB-deficient mutants recovered the synthesis of a photosynthetic apparatus that still retained regulation by oxygen tension when complemented with reg genes from Rhodovulum sulfidophilum and Roseobacter denitrificans. These results suggest that differential expression of photosynthetic genes in response to aerobic and anaerobic growth conditions is not the result of altered redox sensing by the sensor kinase protein, RegB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号