首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Two secreted alkaline phosphatase proteins were purified from cultures of Bacillus subtilis JH646MS. The two proteins showed slight differences in subunit molecular weight, substrate specificity, and charge characteristics. A total of 62% of the first 22 amino-terminal amino acids were identical. Both sequences showed conservation of structural features identified in Escherichia coli and human alkaline phosphatases. One alkaline phosphatase was a monomer and the other was a dimer. Southern analysis of genomic DNA with degenerative oligomers based on the amino acid sequences suggest that there are two structural genes for alkaline phosphatase in the genome of B. subtilis.  相似文献   

4.
The small acid-soluble spore proteins alpha and beta were not detected during stationary-phase growth of asporogenous Bacillus subtilis mutants blocked in stages 0, II, or III, but mutants blocked in stages IV or V accumulated nearly wild-type levels of these small acid-soluble spore proteins. Similar results were obtained when production of Bacillus megaterium C protein (also a small acid-soluble spore protein), as well as alpha and beta, were monitored in these mutants containing a recombinant plasmid carrying the B. megaterium C protein gene. The only exception was a spo0H mutant which synthesized a small amount of C protein, but no alpha or beta.  相似文献   

5.
The Bacillus subtilis ResD-ResE two-component signal transduction system is essential for aerobic and anaerobic respiration. A spontaneous suppressor mutant that expresses ResD-controlled genes and grows anaerobically in the absence of the ResE histidine kinase was isolated. In addition, aerobic expression of ResD-controlled genes in the suppressed strain was constitutive and occurred at a much higher level than that observed in the wild-type strain. The suppressing mutation, which mapped to pgk, the gene encoding 3-phosphoglycerate kinase, failed to suppress a resD mutation, suggesting that the suppressing mutation creates a pathway for phosphorylation of the response regulator, ResD, which is independent of the cognate sensor kinase, ResE. The pgk-1 mutant exhibited very low but measurable 3-phosphoglycerate kinase activity compared to the wild-type strain. The results suggest that accumulation of a glycolytic intermediate, probably 1, 3-diphosphoglycerate, is responsible for the observed effect of the pgk-1 mutation on anaerobiosis of resE mutant cells.  相似文献   

6.
Isoprene is a volatile metabolite of uncertain function in plants, animals, and bacteria. Here, we demonstrate that the isoprene-producing bacterium, Bacillus subtilis, contains an isoprene synthase activity that catalyzes dimethylallyl diphosphate-dependent isoprene formation. Although the enzyme was very labile, it was demonstrated in both permeabilized cells and in partially purified cell extracts. Its activity was optimal at pH 6.2, required low levels of a divalent cation, and appears distinct from chloroplast isoprene synthases. When grown in a bioreactor, B. subtilis cells released isoprene in three distinct phases; using permeabilized cells, it was shown that isoprene synthase activity rose and fell in parallel with each phase. These results suggest that isoprene synthesis is highly regulated in B. subtilis and further research in this model system may shed light on the role of isoprene formation in biological systems.  相似文献   

7.
The eftA gene in Bacillus subtilis has been suggested to be involved in the oxidation/reduction reactions during fatty acid metabolism. Interestingly etfA deletion in B. subtilis results in impairment in CaCO3 precipitation on the biofilm. Comparisons between the wild type B. subtilis 168 and its etfA mutant during in vitro CaCO3 crystal precipitation (calcite) revealed changes in phospholipids membrane composition with accumulation of up to 10% of anteiso-C17:0 and 11% iso-C17:0 long fatty acids. Ca2+ nucleation sites such as dipicolinic acid and teichoic acids seem to contribute to the CaCO3 precipitation. etfA mutant strain showed up to 40% less dipicolinic acid accumulation compared with B. subtilis 168, while a B. subtilis mutant impaired in teichoic acids synthesis was unable to precipitate CaCO3. In addition, B. subtilis etfA mutant exhibited acidity production leading to atypical flagella formation and inducing extensive lateral growth on the biofilm when grown on 1.4% agar. From the ecological point of view, this study shows a number of physiological aspects that are involved in CaCO3 organomineralization on biofilms.  相似文献   

8.
9.
10.
Two restriction fragments of Bacillus subtilis DNA were identified which caused the cat-86 gene present on the promoter cloning plasmid pPL703 to be activated predominantly during postexponential growth of host cells. The postexponential increase was observed in both sporulation-positive strains and in a spoOA mutant of B. subtilis. However, the postexponential increase in the cat-86 gene product, chloramphenicol acetyltransferase, was diminished or not observed when the plasmid-containing cells were grown in the presence of excess glucose. The promoter-containing fragment, designated as 33, was mapped to a site on the B. subtilis chromosome adjacent to hisA. The other fragment, 14, mapped to a site adjacent to ctrA. When present on a high-copy vector, both fragments caused a reduction in the sporulation frequency of host cells. Fragment 33 in high copy number conferred on B. subtilis cells three additional phenotypic changes: brown colony color, intracellular inclusions, and, in a protease-deficient mutant, the production of extracellular protease activity. These activities were observed only in postexponential-phase cultures.  相似文献   

11.
The change of motility and the presence of flagella were followed throughout growth and sporulation in a standard sporulating strain and in 19 cacogenic sporulation mutants of Bacillus subtilis. For the standard strain, the fraction of motile cells decreased during the developmental period to less than 10% at T4. Motility was lost well before the cells lose their flagella. Conditions reducing the decrease of motility also reduced sporulation: motile cells never contained spores. The decrease of motility was not coupled with a decrease in the cellular concentration of adenosine 5'-triphosphate or a decline in oxygen consumption, but an uncoupling agent immediately destroyed motility at any time. Apparently, motility decreased during development because it became increasingly uncoupled from the energy generating systems of the cell. The motility of sporulation mutants decreased after the end of growth at the same time as or earlier than the motility of the standard strain; the early decrease of motility in an aconitase mutant, but not that in an alpha-ketoglurate dehydrogenase mutant, could be avoided by addition of L-glutamate. Sporulation or related events such as extracellular antibiotic or protease production were not needed for the motility decline.  相似文献   

12.
13.
Heat-shock proteins during growth and sporulation of Bacillus subtilis   总被引:6,自引:0,他引:6  
Four major heat-shock proteins (hsps) with apparent molecular masses of 84, 69, 32 and 22 kDa were detected in exponentially growing stationary phase and sporulating cells of Bacillus subtilis heat-shocked from 30 to 43 degrees C. The most abundant, hsp69, is probably analogous to the E. coli groEL protein. These proteins were transiently inducible by heat-shock. Partial purification of RNA polymerase revealed several other minor hsps. One of these, a 48 kDa polypeptide probably corresponds to sigma 43. The synthesis of this polypeptide and at least two other proteins appeared to be under sporulation and heat-shock regulation and was affected by the SpoOA mutation.  相似文献   

14.
In Bacillus subtilis Marburg strain, single-point mutations in the phoP locus brought about simultaneous losses of the major activities of alkaline phosphatase (APase) and alkaline phosphodiesterase (APDase). Revertants recovered the two activities. APases with APDase activity were purified from the membrane fraction of B. subtilis 6160-BC6 and from the culture fluid of an APase-secreting B. subtilis mutant strain, RAN 1. In addition to these major APases with APDase activity, at least two kinds of phosphodiesterase (PDase) without phosphatase activity were found in the cytoplasmic supernatants of RAN 1 and an APase-less B. subtilis mutant strain, SP25. Another minor APase with a molecular weight of about 80,000, which had almost no PDase activity, was isolated from the membrane fraction of strain 6160-BC6. Enzyme distribution in subcellular fractions from various strains cultured in high- and low-phosphate media was analyzed. The PDases did not cross-react with rabbit antiserum against the RAN 1 APase with APDase activity. The main component of the PDases had a molecular weight of about 80,000 and was most active at pH 8.0. These results suggest that APase with APDase activity is different from PDases detected in cytoplasmic supernatants and that phoP is the structural gene for the phosphate-repressible APase with APDase activity.  相似文献   

15.
Control of sigma factor activity during Bacillus subtilis sporulation   总被引:1,自引:0,他引:1  
  相似文献   

16.
Progression of Bacillus subtilis through a series of morphological changes is driven by a cascade of sigma (sigma) factors and results in formation of a spore. Recent work has provided new insights into the location and function of proteins that control sigma factor activity, and has suggested that multiple mechanisms allow one sigma factor to replace another in the cascade.  相似文献   

17.
The levels of urease and asparaginase were elevated 25- and 20-fold, respectively, in extracts of Bacillus subtilis cells grown in medium containing nitrogen sources that are poor sources of ammonium (NH4+) compared with the levels seen in extracts of cells grown in medium containing nitrogen sources that are good sources of NH4+. To determine whether a collection of genes whose expression responds to nitrogen availability could be isolated, a library of Tn917-lacZ insertions was screened for nitrogen-regulated beta-galactosidase expression. Two fusion strains were identified. beta-Galactosidase expression was 26- and 4,000-fold higher, respectively, in the nrg-21::Tn917-lacZ and the nrg-29::Tn917-lacZ insertion strains during NH4(+)-restricted growth than during growth on nitrogen sources that are good sources of NH4+. PBS1 transduction analysis showed that the nrg-21::Tn917-lacZ insertion mapped between gutB and purB and that the nrg-29::Tn917-lacZ insertion mapped between degSU and spoIID. The repression of expression of these four gene products during growth on good sources of NH4+ required the wild-type glutamine synthetase protein but not the glutamine synthetase regulatory protein, GlnR.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号