首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have previously demonstrated that astrocytes synthesize and secrete apolipoprotein E in situ. In the present work, primary cultures of rat brain astrocytes were used to study apolipoprotein E synthesis, secretion, and metabolism in vitro. The astrocytes in culture contained immunoreactive apolipoprotein E in the area of the Golgi apparatus. Incubation of the astrocytes with [35S]methionine resulted in the secretion of labeled immunoprecipitable apolipoprotein E, which constituted 1-3% of the total secreted proteins. The apolipoprotein E secreted in culture and the apolipoprotein E in rat brain extracts differed from serum apolipoprotein E in two respects: both had a slightly higher apparent molecular weight (approx. 36,000) and more acidic isoforms than serum apolipoprotein E. Sialylation of the newly secreted apolipoprotein accounted for the difference in both the apparent molecular weight and isoelectric focusing pattern of newly secreted apolipoprotein E and plasma apolipoprotein E. The astrocytes possessed apolipoprotein B,E(LDL) receptors capable of binding and internalizing apolipoprotein E-containing lipoproteins. The uptake of lipoproteins by the cells led to a reduction in the number of cell surface receptors and to the intracellular accumulation of cholesteryl esters. Since apolipoprotein E is present within the brain, and since brain cells can express apolipoprotein B,E(LDL) receptors, apolipoprotein E-containing lipoproteins may function to redistribute lipid and regulate cholesterol homeostasis within the brain.  相似文献   

3.
Cloning and regulation of messenger RNA for mouse apolipoprotein E   总被引:9,自引:0,他引:9  
A cDNA clone for mouse apolipoprotein E has been identified from a mouse liver cDNA library by a combination of differential colony hybridization and hybrid selection-translation. The identity of the clone was unambiguously established by partial sequencing and comparison with human apolipoprotein E nucleotide and amino acid sequences. In conjunction with an in vitro translation assay for apolipoprotein E, the clone has been used to examine the relative levels of apolipoprotein E mRNA in various tissues of the mouse and the regulation of apolipoprotein E synthesis in response to a diet rich in saturated fat and cholesterol. In the tissues examined, the clone was found to hybridize to a polyadenylated RNA species of approximately 1400 nucleotides. Of the tissues involved in lipoprotein synthesis, liver is very rich (about 1% of total) in apolipoprotein E mRNA while intestine contains only trace amounts. Appreciable levels of active apolipoprotein E mRNA (up to 10% of that in liver) are also detected in peripheral tissues not associated with lipoprotein synthesis, including lung, kidney, spleen, and heart. Thus, extrahepatic apolipoprotein E synthesis may contribute significantly to the levels present in plasma, and a possible function in "reverse cholesterol transport" is considered. When mice were placed on a high lipid diet there was no discernible change in the level of apolipoprotein E mRNA in liver or intestine, although the level of the circulating protein increased about 3-fold. We conclude that in mice the effect of diet on apolipoprotein E levels in blood does not result from induction of mRNA in these tissues.  相似文献   

4.
We have isolated and analyzed apolipoprotein E5 gene from a patient with hyperlipoproteinemia. Apolipoprotein E5 is a variant of apolipoprotein E with two additional units of positive charge and smaller apparent molecular weight than apolipoprotein E3, which is the major isoform of apolipoprotein E. The heterozygous gene of apolipoprotein E5/3 from the patient was cloned into lambda phage. The cloned apolipoprotein E genes were subcloned into a murine retrovirus shuttle vector and were expressed. One out of four clones expressed apolipoprotein E5. The analysis of the nucleotide sequence of the exons and exon-intron boundary regions has shown a G to A substitution in the 18th nucleotide from the 5'-end of the third exon. This single base substitution changes the amino acid residue Glu to Lys at the third position from the amino-terminus of the mature protein, and gives two additional units of positive charge to the molecule.  相似文献   

5.
We have isolated and analyzed apolipoprotein E7 gene from a patient with hyperlipoproteinemia. Apolipoprotein E7 (apolipoprotein E-Suita) is a variant of apolipoprotein E with four additional units of positive charge compared to apolipoprotein E3, which is the major isoform of apolipoprotein E. The heterozygous gene of apolipoprotein E7/3 from the patient was cloned into lambda phage. The cloned apolipoprotein E genes were subcloned into a murine retrovirus shuttle vector and were expressed. Two out of five clones expressed apolipoprotein E7. The analysis of the nucleotide sequence of the exon and exon-intron boundary regions has shown two G-to-A nucleotide substitutions in the 548 and 551 nucleotide positions from the 5'-end of the fourth exon. These two base substitutions change the amino acid residues -Glu-Glu- to -Lys-Lys- at the 244 and 245 positions from the amino-terminus of the mature protein, and give four additional units of positive charge to the molecule.  相似文献   

6.
The purpose of this study was to identify the apolipoprotein A-containing lipoprotein particles produced by HepG2 cells. The apolipoprotein A-containing lipoproteins separated from apolipoprotein B-containing lipoproteins by affinity chromatography of culture medium on concanavalin A were fractionated on an immunosorber with monoclonal antibodies to apolipoprotein A-II. The retained fraction contained apolipoproteins A-I, A-II and E, while the unretained fraction contained apolipoproteins A-I and E. Both fractions were characterized by free cholesterol as the major and triglycerides and cholesterol esters as the minor neutral lipids. Further chromatography of both fractions on an immunosorber with monoclonal antibodies to apolipoprotein A-I showed that 1) apolipoprotein A-II only occurs in association with apolipoprotein A-I, 2) apolipoprotein A-IV is only present as part of a separate lipoprotein family (lipoprotein A-IV), and 3) apolipoprotein E-enriched lipoprotein A-I:A-II and lipoprotein A-I are the main apolipoprotein A-containing lipoproteins secreted by HepG2 cells.  相似文献   

7.
Hepatic lipocytes, the retinoid-storing cells of the liver, share several characteristics with vascular smooth muscle cells. To determine whether they also share the characteristic of apolipoprotein E secretion, we have compared the relative mRNA expression and protein secretion of apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV in early primary cultures of lipocytes, hepatocytes, and Kupffer cells. Expression of apolipoprotein mRNAs was detected using the polymerase chain reaction and oligonucleotide primers specific for apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV. Cellular mRNA concentrations were compared by dot blot analysis, and apolipoprotein secretion was assessed by immunoblot analysis of culture media. Apolipoprotein E mRNA was found in all three cell types, whereas apolipoprotein A-I and A-IV mRNAs were detected only in hepatocytes. Hepatocyte, lipocyte, and Kupffer cell media all contained a Mr approximately 36,000 protein identified by an antibody specific for rat apolipoprotein E. The relative concentration of apolipoprotein E mRNA per microgram of total cellular RNA in lipocytes, hepatocytes, and Kupffer cells was 1.0, 3.0, and 1.6, respectively. The relative secretion of apolipoprotein E per cell was also lowest in lipocytes, being twofold greater in hepatocytes and 1.4-fold greater in Kupffer cells. The secretion of apolipoprotein E by lipocytes is not only an additional smooth muscle cell-like characteristic of the hepatic lipocyte, but also raises the possibility of retinol mobilization upon apolipoprotein secretion.  相似文献   

8.
Plasma apolipoprotein secretion by human monocyte-derived macrophages   总被引:1,自引:0,他引:1  
Apolipoprotein E has been demonstrated to be a major secretory protein of human monocyte macrophages. The synthesis of the other plasma apolipoproteins by these cells has not been documented. Human monocyte macrophages cultured for 17-76 days were preincubated for 24 h in RPMI 1640/0.2% bovine serum albumin with or without malondialdehyde-LDL (100 micrograms/ml), followed by an additional 24 h incubation in RPMI 1640/0.2% bovine serum albumin. The media from the two incubation periods were analyzed for apolipoproteins A-I, B, C-II, C-III and E by specific radioimmunoassays. No apolipoprotein B mass was detected with a specific radioimmunoassay capable of detecting 10 ng apolipoprotein B. No apolipoproteins A-I, C-II or C-III mass was detected, even though the radioimmunoassays for these apolipoproteins were as sensitive as that for apolipoprotein E (detection limit of 0.2 ng). In contrast, significant levels of macrophage-secreted apolipoprotein E were quantified. Baseline apolipoprotein E production ranged from 0.64 to 2.82 micrograms/mg cell protein per 24 h. Preincubation in the presence of malondialdehyde-LDL (100 micrograms/ml) stimulated a 1.6-3.0-fold increase in apolipoprotein E secretion. The identification of the immunoreactive material as apolipoprotein E was confirmed by labelling the cells with [35S]methionine, followed by fractionation of the 35S-labelled secretory products by anti-apolipoprotein E affinity chromatography and SDS-gel electrophoresis. We thus report the absence of synthesis of apolipoproteins A-I, B, C-II and C-III by cultured human monocyte macrophages. These cells, however, can synthesize microgram levels of apolipoprotein E on a per mg protein basis.  相似文献   

9.
Abnormal apolipoprotein composition in alcoholic hepatitis   总被引:1,自引:0,他引:1  
Alcoholic hepatitis leads to major derangements in lipoprotein metabolism. This study defines the characteristics of the abnormal high density lipoprotein and very low density lipoprotein in relation to the severity of the disease. In severely affected subjects very low density lipoprotein apolipoproteins were deficient in apolipoprotein E and apolipoprotein C. The concentration of high density lipoprotein was markedly reduced, although the proportion of high density lipoprotein 1 was substantially elevated when compared to normal subjects. High density lipoproteins were deficient in apolipoprotein AI and apolipoprotein AII but enriched in apolipoprotein E, apolipoprotein E complexes and apolipoprotein C, and contained a mixture of particles. The high density lipoprotein of subjects with alcoholic hepatitis contained a high proportion of material which bound to heparin affinity columns. This bound fraction contained a group of particles rich in apolipoprotein E, apolipoprotein E complexes and apolipoprotein C and was deficient in apolipoprotein AI and apolipoprotein AII. Examination by electron microscopy showed the presence of both discoidal and spherical particles, which varied in concentration according to the severity of the disease. Another fraction of high density lipoprotein, not bound to heparin, contained reduced amounts of apolipoprotein AI and apolipoprotein AII, consisted of disc-shaped particles and showed a higher esterified: free cholesterol ratio than the other high density lipoprotein fraction.  相似文献   

10.
11.
To determine the concentration and distribution of apolipoproteins C-III and E in low density lipoproteins (LDL) of d 1.025-1.043 g/ml, fresh human plasma was fractionated by single-spin density gradient ultracentrifugation into five layers. Two major subpopulations including layer 2 (d 1.025-1.029 g/ml) and layer 3 (d 1.032-1.043 g/ml) were isolated and characterized by determination of flotation coefficient, neutral lipids and apolipoproteins B, C-III and E. The apolipoprotein B/C-III/E ratio of layer 2 was 100/(3.3 +/- 2.0)/(5.1 +/- 2.9) (wt/wt) and that of layer 3 was 100/(0.61 +/- 0.32)/(0.58 +/- 0.29) (wt/wt). These weight ratios corresponded to molar ratios of 1.0/(1.90 +/- 1.16)/(0.74 +/- 0.42) and 1.0/(0.34 +/- 0.18)/(0.08 +/- 0.04), respectively. Layer 2 contained 6-23% of the total plasma apolipoprotein B or 7-27% of total LDL2 (d 1.019-1.063 g/ml) apolipoprotein B. Layer 3 contained 41-65% of plasma apolipoprotein B or 62-86% of LDL2 apolipoprotein B. About 5-17% of apolipoprotein C-III and 8-30% of apolipoprotein E in plasma are distributed in layers 2 and 3 with the majority present in layer 2. These results show an evident apolipoprotein heterogeneity of LDL2 isolated from normolipidemic subjects. Moreover, they show that the relatively small amounts of apolipoprotein C-III and apolipoprotein E in lower-density segments of LDL2 take on a greater significance when presented in molar rather than weight concentrations. The existence of different ratios of apolipoprotein C-III/apolipoprotein E in layer 2 and layer 3 suggest the presence in LDL2 of varying amounts of several discrete apolipoprotein B- and/or apolipoprotein C-III- and apolipoprotein E-containing lipoprotein particles.  相似文献   

12.
Lipoprotein Lp(a) was isolated by immunoaffinity chromatography using anti apolipoprotein B and anti apolipoprotein (a) immunosorbents. Besides apolipoproteins (a) and B, this fraction was shown to contain apolipoproteins C and E. Therefore, it was decided to further purify this crude Lp(a) into particles containing apolipoprotein E and particles free of apo E, using chromatography with an anti apolipoprotein E immunosorbent. Lp(a), free of apolipoprotein E was cholesterol ester rich and triacylglycerol poor and was found mainly in the LDL size range. In contrast, Lp(a) containing apolipoprotein E was triacylglycerol rich and was distributed mainly in the VLDL and IDL size range. Binding of these two fractions, one containing apo E and one free of it, to the apo B/E receptor of HeLa cells was studied. Both fractions bound to the receptor but the one containing apo E had a better affinity than the one free of apo E. Further studies are needed to identify the clinical importance of these two different entities.  相似文献   

13.
The capacity of lipoprotein fractions to provide cholesterol necessary for human lymphocyte proliferation was examined. When endogenous synthesis of cholesterol was blocked, proliferation of mitogen-stimulated normal human lymphocytes was markedly inhibited unless an exogenous source of sterol was supplied. All lipoprotein fractions with the exception of high density lipoprotein subclass 3 were able to provide cholesterol for lymphocyte proliferation. Each of the lipoprotein subfractions capable of providing cholesterol was also able to regulate endogenous sterol synthesis in cultured human lymphocytes. Provision of cholesterol by lipoproteins required the interaction of apolipoprotein B or apolipoprotein E with specific receptors on normal lymphocytes. Apolipoprotein modification by acetylation or methylation, which markedly reduced the ability to regulate sterol biosynthesis, also diminished the capacity of lipoproteins to provide cholesterol. In addition, depletion of apolipoprotein B- and apolipoprotein E-containing particles from high density lipoprotein decreased its ability to suppress cholesterol synthesis and prevented it from providing cholesterol to proliferating lymphocytes. Monoclonal antibodies directed against the receptor-recognition sites on apolipoprotein B and apolipoprotein E were used to define the specific apolipoproteins required for the provision of cholesterol to lymphocytes by the various lipoprotein fractions. The antibody to apolipoprotein B inhibited cholesterol provision by both low density lipoprotein (LDL) and other lipoprotein fractions. The antibody to apolipoprotein E did not decrease provision of cholesterol by LDL but did inhibit the capacity of other fractions to provide cholesterol. In addition, a monoclonal antibody against the ligand binding site on the LDL receptor inhibited provision of cholesterol to normal lymphocytes by all lipoproteins. Finally, lymphocytes lacking LDL receptors were unable to obtain cholesterol from any lipoprotein fraction. These studies demonstrate that LDL receptor-mediated interaction with apolipoprotein B or apolipoprotein E is essential for the provision of cholesterol to normal human lymphocytes from all lipoprotein sources.  相似文献   

14.
A cDNA library was constructed from rat liver polyadenylated RNA using the expression vector lambda gt11-Amp3. Several clones expressing antigenic determinants for rat apolipoprotein E were identified. The cDNA insert in one clone was further characterized and found to have a sufficient length (1120 base pairs) to code for full length apolipoprotein E. Restriction mapping and nucleotide sequencing showed the clone to contain the coding region for apolipoprotein E flanked by about 120 nucleotides at the 3'-side and by about 64 nucleotides on the 5'-side. One of the proteins produced by the clone was found to be a prokaryotic/eukaryotic hybrid protein reacting with antibodies to both bacterial beta-galactosidase and rat apolipoprotein E.  相似文献   

15.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

16.
A human cell line established from a patient of an acute monocytic leukemia (THP-1) retained an ability to synthesize and secrete plasma apolipoprotein E like protein. The protein was identified with monospecific antibody raised against human plasma apolipoprotein E. The cells also secreted lipoprotein lipase (EC 3.1.1.34). The enzyme was characterized as lipoprotein lipase on the basis of the requirement of apolipoprotein C-II as an activator and the inhibition of its activity by sodium chloride. The secretion of both apolipoprotein E and lipoprotein lipase was markedly enhanced in the process of differentiation into macrophage-like cells by the addition of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate.  相似文献   

17.
Apolipoprotein E and atherosclerosis   总被引:11,自引:0,他引:11  
Apolipoprotein E plays a key protective role in atherosclerosis. Its capacity to safeguard against this disease can be attributed to at least three distinct functions. First, plasma apolipoprotein E maintains overall plasma cholesterol homeostasis by facilitating efficient hepatic uptake of lipoprotein remnants. Second, lesion apolipoprotein E in concert with apolipoprotein A-I facilitates cellular cholesterol efflux from macrophage foam cells within the intima of the lesion. Third, lesion apolipoprotein E directly modifies both macrophage- and T lymphocyte-mediated immune responses that contribute to this chronic inflammatory disease.  相似文献   

18.
To examine the unproved hypothesis that dietary cholesterol affects the synthesis of apolipoprotein B and E, we fed rats a cholesterol-rich diet that has been shown to alter dramatically the serum concentrations of these apolipoproteins. Rats fed for 4 weeks on a cholesterol-rich diet accumulate increased concentrations of low Mr apolipoprotein B (+2.7-fold) and decreased concentrations of apolipoprotein E (-40%) in their serum. Hepatocytes obtained from similarly treated rats were placed in monolayer culture and the rate of synthesis de novo of apolipoproteins was determined. Although cells from cholesterol-fed rats remained filled with lipid droplets throughout the experimental period, there was no difference in plating efficiency or viability, compared with cells obtained from chow-fed control rats. Both groups of cells synthesized and secreted immunoprecipitable apolipoproteins B and E at similar rates throughout the 18 h experiment. Thus there was a discordance between the effects of dietary cholesterol on serum apolipoprotein concentrations and hepatocyte synthesis and secretion. The data indicate that altered hepatic apolipoprotein synthesis cannot account for the changes in serum apolipoprotein concentrations caused by dietary cholesterol.  相似文献   

19.
Apolipoprotein E has key functions in lipoprotein metabolism, and polymorphisms in the apolipoprotein E gene are associated with distinct lipoprotein patterns. The possibility of gene-nutrient interactions for apolipoprotein E has been addressed in many studies. Although results have generally been mixed, the indications for such an interaction have been more common in studies employing a metabolic challenge. Studies directly designed to examine apolipoprotein E gene-nutrient interactions are needed.  相似文献   

20.
The effect of apolipoproteins A-I, A-II, C-II, C-III and E on the hydrolysis of phosphatidylcholine and triacylglycerol by hepatic lipase was studied. Hepatic lipase catalyzed phospholipid hydrolysis was 1.8-fold activated by apolipoprotein E while the other apolipoproteins did not affect the hydrolysis by this enzyme. Triacylglycerol hydrolysis by hepatic lipase was 1.5-fold activated by apolipoprotein E while the other apolipoproteins inhibited hepatic lipase. These results suggest that lipoproteins containing apolipoprotein E may be preferred substrates for hepatic lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号