首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

2.
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.  相似文献   

3.
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.  相似文献   

4.
M de Zamaroczy  G Bernardi 《Gene》1992,122(1):91-99
The introns of three genes (oxi3, cob and 21S) from the mitochondrial (mt) genome of Saccharomyces cerevisiae contain closed reading frames (CRFs). In the present work, we have analyzed these sequences in their oligodeoxyribonucleotide (oligo; isostich) patterns. We have shown that the relative amounts of di- to hexanucleotides, when compared to random sequences having the same sizes and compositions, exhibit the same deviations as the intergenic noncoding sequences of the mt genome (except for the CRFs from 21S intron). In contrast, intronic open reading frames (ORFs) showed oligo patterns which were generally quite distinct from those of CRFs, although some similarities could be detected in some cases (especially for aI5 alpha). The mt introns of yeast, therefore, are endowed with a mosaic structure, in which CRFs derive from mt intergenic sequences, whereas ORFs have a different origin (indicated as exogenous by other evidences) yet show, in some cases, the effects of 'sequence assimilation' with CRFs.  相似文献   

5.
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.  相似文献   

6.
Summary DNA sequence analysis has shown that the gene coding for the mitochondrial (mt) large subunit ribosomal RNA (rRNA) fromPodospora anserina is interrupted by two class I introns. The coding region for the large subunit rRNA itself is 3715 bp and the two introns are 1544 (r1) and 2404 (r2) bp in length. Secondary structure models for the large subunit rRNA were constructed and compared with the equivalent structure fromEscherichia coli 23S rRNA. The two structures were remarkably similar despite an 800-base difference in length. The additional bases in theP. anserina rRNA appear to be mostly in unstructured regions in the 3 part of the RNA. Secondary structure models for the two introns show striking similarities with each other as well as with the intron models from the equivalent introns inSaccharomyces cerevisiae, Neurospora crassa, andAspergillus nidulans. The long open reading frames in each intron are different from each other, however, and the nucleotide sequence similarity diverges as it proceeds away from the core structure. Each intron is located within regions of the large subunit rRNA gene that are highly conserved in both sequence and structure. Computer analysis showed that the open reading frame for intron r1 contained a common maturase-like polypeptide. The open reading frames of intron r2 apeared to be chimeric, displaying high sequence similarity with the open reading frames in the r1 and ATPase 6 introns ofN. crassa.  相似文献   

7.
We have undertaken a comprehensive study of the gene conversion of all the mitochondrial introns of Saccharomyces capensis. The approach used involved the measurements of intron transmission amongst the progeny of crosses between a recipient strain (Saccharomyces cerevisiae intronless mitochondria) and various donor strains (Saccharomyces capensis, with various combinations of mitochondrial introns). We have shown that the S. capensis second intron (bi2 of cytochrome b gene) is extremely active as a donor in gene conversion whereas its homologous S. cerevisiae intron is not. Determination of sequence of the S. capensis intron demonstrates that it differs from that of the homologous S. cerevisiae intron (bi2) by a very small number of nucleotide substitutions.  相似文献   

8.
Our previous study of the North American biogeography of Bangia revealed the presence of two introns inserted at positions 516 and 1506 in the nuclear-encoded SSU rRNA gene. We subsequently sequenced nuclear SSU rRNA in additional representatives of this genus and the sister genus Porphyra in order to examine the distribution, phylogeny, and structural characteristics of these group I introns. The lengths of these introns varied considerably, ranging from 467 to 997 nt for intron 516 and from 509 to 1,082 nt for intron 1506. The larger introns contained large insertions in the P2 domain of intron 516 and the P1 domain of intron 1506 that correspond to open reading frames (ORFs) with His-Cys box homing endonuclease motifs. These ORFs were found on the complementary strand of the 1506 intron in Porphyra fucicola and P. umbilicalis (HG), unlike the 516 intron in P. abbottae, P. kanakaensis, P. tenera (SK), Bangia fuscopurpurea (Helgoland), and B. fuscopurpurea (MA). Frameshifts were noted in the ORFs of the 516 introns in P. kanakaensis and B. fuscopurpurea (HL), and all ORFs terminated prematurely relative to the amino acid sequence for the homing endonuclease I-Ppo I. This raises the possibility that these sequences are pseudogenes. Phylogenies generated using sequences of both introns and the 18S rRNA gene were congruent, which indicated long-term immobility and vertical inheritance of the introns followed by subsequent loss in more derived lineages. The introns within the florideophyte species Hildenbrandia rubra (position 1506) were included to determine relationships with those in the Bangiales. The two sequences of intron 1506 analyzed in Hildenbrandia were positioned on a well-supported branch associated with members of the Bangiales, indicating possible common ancestry. Structural analysis of the intron sequences revealed a signature structural feature in the P5b domain of intron 516 that is unique to all Bangialean introns in this position and not seen in intron 1506 or other group IC1 introns.  相似文献   

9.
10.
A series of 18 small overlapping restriction fragments has been cloned, covering the complete mitochondrial genome of Schizosaccharomyces pombe. By hybridizing mitochondrial gene probes from Saccharomyces cerevisiae and Neurospora crassa with restriction fragments of Schizosaccharomyces pombe mitochondrial DNA, the following homologous genes were localized on the mitochondrial genome of S. pombe: cob, cox1, cox2 and cox3, ATPase subunit 6 and 9 genes, the large rRNA gene and both types of open reading frames occurring in mitochondrial introns of various ascomycetes. The region of the genome, hybridizing with cob exon probes is separated by an intervening sequence of about 2500 bp, which is homologous with the first two introns of the cox1 gene in Saccharomyces cerevisiae (class II introns according to Michel et al. 1982). Similarly, in the cox1 homologous region, which covers about 4000 bp, two regions were detected hybridizing with class I intron probes, suggesting the existence of two cox1 introns in Schizosaccharomyces pombe. Hybridization with several specific exon probes with a determined order has revealed that cob, cox1, cox3 and the large rRNA gene are all transcribed from the same DNA strand. The low intensities of hybridization signals suggest a large evolutionary distance between Schizosaccharomyces pombe and Saccharomyces cerevisiae or Neurospora crassa mitochondrial genes. Considering the length of the mitochondrial DNA of Schizosaccharomyces pombe (about 19.4 kbp) and the expected length of the localized genes and intron sequences there is enough space left for encoding the expected set of tRNAs and the small rRNA gene. The existence of leader-, trailer-, ori- and spacer sequences or further unassigned reading frames is then restricted to a total length of about 3000 bp only.  相似文献   

11.
We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non- Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site- 2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba- like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.   相似文献   

12.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

13.
14.
In several organisms, including Saccharomyces cerevisiae and other yeast species, the product encoded by the SEC61 gene is considered to be the core element of the translocation apparatus within the endoplasmic reticulum membrane through which translocation of secretory and membrane proteins occurs. In this study, we have cloned and characterized the homolog of the SEC61 gene from the yeast Pichia anomala. The cloned gene includes an ORF, interrupted after the first ten nucleotides by an intron of 131 bp, encoding a 479-amino acid putative polypeptide exhibiting homology to the products encoded by different eukaryotic SEC61 genes, particularly to those from other yeast species. We show that the P. anomala SEC61 gene is correctly processed (intron splicing) when expressed in S. cerevisiae and that it is able to complement the thermosensitive phenotype associated with a mutation in the S. cerevisiae SEC61 gene.  相似文献   

15.
16.
17.
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.  相似文献   

18.
19.
20.
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号