首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elevated plasma homocysteine levels are associated with increased risk for cardiovascular disease and neural tube defects in humans. Folate treatment decreases homocysteine levels and dramatically reduces the incidence of neural tube defects. The flavoprotein methylenetetrahydrofolate reductase (MTHFR) is a likely target for these actions of folate. The most common genetic cause of mildly elevated plasma homocysteine in humans is the MTHFR polymorphism A222V (base change C677-->T). The X-ray analysis of E. coli MTHFR, reported here, provides a model for the catalytic domain that is shared by all MTHFRs. This domain is a beta8alpha8 barrel that binds FAD in a novel fashion. Ala 177, corresponding to Ala 222 in human MTHFR, is near the bottom of the barrel and distant from the FAD. The mutation A177V does not affect Km or k(cat) but instead increases the propensity for bacterial MTHFR to lose its essential flavin cofactor. Folate derivatives protect wild-type and mutant E. coli enzymes against flavin loss, and protect human MTHFR and the A222V mutant against thermal inactivation, suggesting a mechanism by which folate treatment reduces homocysteine levels.  相似文献   

2.
The aim of this study was to observe the effect of folate and antioxidants alone on homocysteine levels and oxidative stress markers, and to evaluate whether their co-administration promotes their effects. One hundred patients with hyperhomocysteinemia were randomized into four equal groups, which were then treated with folate, antioxidants or folate plus antioxidants for 2 months; group IV was a control group. Serum homocysteine, folate and oxidative stress markers were measured before the study, at the end of folate and/or antioxidants administration and 3 months later. Folate caused a significant decrease in homocysteine concentration. Antioxidants did not influence homocysteine concentration, but they improved the antioxidative defense (plasma antioxidant capacity and intraerythrocyte glutathione were increased) and partially prevented lipid peroxidation (malondialdehyde level was slightly decreased). Supplementation with folate had a similar effect on intracellular glutathione and plasma malondialdehyde. Simultaneous administration of folate and antioxidants did not show any additive effect with the exception of a slower decrease of folate concentration after its supplementation had been discontinued. Folate may be considered as an effective antioxidant in patients with hyperhomocysteinemia; this can be a result of decreased production of free radicals due to a reduced level of homocysteine. Its antioxidative effect cannot be promoted by co-administration of antioxidants.  相似文献   

3.
The functional consequences of the G80A RFC SNP on the expressed reduced folate carrier protein were evaluated by looking at the relationship between intake of folate, plasma folate and cellular stores of the vitamin. The effect on homocysteine was also examined. Homocysteine is a thiol that is known to be inversely associated with folate, and which is considered to be both thrombo- and athrogenic. At high levels, homocysteine may also interfere with nitric oxide mediated vasodilation, cause oxidative injury to, and proliferation of the vascular endothelium, and alter the elastic properties of the vascular wall, contributing to increased blood pressure. Participants (119; 52 male, 67 female) from a NSW retirement village were assessed. Independent of gender, the assimilation of folate from dietary sources into red cells showed a significant association for GG (r=0.399; p=0.022) and GA (r=0.564; p<0.0001) subjects, but not homozygous recessive (AA) individuals (r=0.223; p=0.236). The same genotype based pattern of significance was shown for the association between dietary folate and plasma folate (GG: r=0.524; p=0.002, GA: r=0.408; p=0.002). No genotype-related pattern of significance was shown for the association between dietary folate and homocysteine. When examined by gender, some differences were apparent; one-way ANOVA showed that genotype influenced diastolic blood pressure in males (p=0.019), while only females showed a significant correlation between dietary folate and blood pressure within specific genotypes (Systolic pressure GA: r=-0.372; p=0.025, carriage of A: r=0.-0.357; p=0.011. Diastolic pressure GA: r=-0.355; p=0.034, carriage of A: r=0.-0.310; p=0.029). The G80A RFC SNP had an impact on the absorption and cellular translocation of dietary folate and its association with blood pressure in an elderly population.  相似文献   

4.
ABSTRACT: BACKGROUND: H. pylori infection has been associated with many micronutrient deficiencies. There is a dearth of data from communities with nutritional deficiencies and high prevalence of H. pylori infection. The aim of this study was to determine the impact of H. pylori infection on serum levels of vitamin B12, folate and homocysteine in patients with functional dyspepsia (FD). METHODS: One hundred and thirty-two patients with FD undergoing gastroscopy were enrolled. The serum was analyzed for B12, folate and homocysteine levels before gastroscopy. H. pylori infection was diagnosed by histopathological examination of gastric biopsies and urea breath test. An independent sample t-test and the Mann-Whitney test were used to compare mean serum concentrations of biomarkers between H. pylori-positive and H. pylori-negative groups of patients. A Chi-square test was performed to assess the differences among proportions, while Spearman's rho was used for correlation analysis between levels of B12 and homocysteine. RESULTS: The mean age of the group was 40.3 +/- 11.5 (19-72) years. Folate deficiency was seen in 43 (34.6%), B12 deficiency in 30 (23.1%) and hyperhomocysteinemia in 60 (46.2%) patients. H. pylori was present in 80 (61.5%) patients with FD while it was absent in 50 (38.5%). Mean serum levels of B12, folate and homocysteine in the H. pylori-positive group of patients were not significantly different from the levels in the H. pylori-negative group (357 +/- 170 vs. 313 +/- 136 pg/mL; p = 0.13), (4.35 +/- 1.89 vs. 4.42 +/- 1.93 ng/mL; p = 0.84); (15.88 +/- 8.97 vs. 16.62 +/- 7.82 mumol/L; p = 0.24); respectively. B12 deficiency ([less than or equal to]200 pg/mL) was 23.8% in the H. pylori-positive patients versus 22.0% in the H. pylori-negative patients. Folate deficiency ([less than or equal to]3.5 ng/mL) was 33.8% in the H. pylori-positive group versus 36% in the H. pylori-negative group. Hyperhomocysteinemia (>15 mumol/L) was present in 46.2% of H. pylori-positive patients compared to 44% in the H. pylori-negative group. Correlation analysis indicated that serum B12 levels were inversely associated with serum levels of homocysteine in patients with FD (rho = 0.192; p = 0.028). CONCLUSIONS: This study demonstrated an inverse relationship between serum levels of B12 and homocysteine in patients with FD. Moreover, no impact of the presence of H. pylori was found on B12, folate and homocysteine levels in such patients.  相似文献   

5.
Folate stimulation is known to enhance Dictyostelium discoideum differentiation. During early differentiation, D. discoideum cells possess two classes of folate receptors which can be distinguished by their difference in specificity (R. J. W. de Wit, FEBS Lett. 150, 445-448, 1982). We investigated the type of receptor by which folate affects cell differentiation. Two independently regulated developmental markers were used: the extracellular phosphodiesterase-inhibitor system and cell-surface phosphodiesterase activity. Our results indicate that the major effect of folate on development is mediated by the folate-specific receptor. The nonspecific folate receptor was only involved in a minor, transient enhancement of the extracellular phosphodiesterase activity very early in development.  相似文献   

6.
Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway.  相似文献   

7.
Protein phosphatase PP2A dephosphorylates phosphorylated tau (P-tau) and neurofilaments (pNFs). PP2A is S-adenosylmethionine (SAM)-dependent and might thus link methylation with neurodegeneration. Low SAM and increased S-adenosylhomocysteine (SAH) can enhance the risk of dementia. We studied the effect of hyperhomocysteinemia on P-tau (Ser396), pNF-H (heavy chain), and PP2A-activity and level (the C subunit) in rat brain. Wistar rats (total n=55) were fed either on a standard, a homocystine 1.7% or a methionine 2.4%-rich diet for 5 months. P-tau was tested in 21 frontal cortex tissue slices using immuno-fluorescence. Concentrations of pNF-H and the activity and level of PP2A were measured in brain extracts. Concentrations of homocysteine, SAM and SAH strongly increased in plasma of rats on the modified diets. The diets caused lowering of plasma folate and vitamin B12 and a significant increase in P-tau (Ser396) in brain tissues but PP2A activity and level were unchanged. Plasma folate correlated to brain tissue PP2A activity (r=0.28), pNF-H (r=-0.30), and P-tau (Ser396) staining (r=-0.57) all p<0.05. Phosphorylation of brain functional proteins was related to folate. The effect of the diet on P-tau and pNF-H seemed not to be explained by a lower activity or protein level of PP2A. Folate might prove protective against multiple steps in the process of neurodegeneration.  相似文献   

8.
《Epigenetics》2013,8(6):394-398
Folic acid supplementation during pregnancy has known beneficial effects. It reduces risk of neural tube defects and low birth weight. Folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. However, most data on the effects of folate on the epigenome is derived from animal or in vitro models. We examined the relationship between cord blood methylation and maternal folic acid intake, cord blood folate and homocysteine using data from 24 pregnant women. Genome-wide methylation was determined by the level of methylation of LINE-1 repeats using Pyrosequencing. We show that cord plasma homocysteine (p = 0.001, r = -0.688), but not serum folate or maternal folic acid intake, is inverse correlated with LINE-1 methylation. This remained significant after correction for potential confounders (p = 0.004). These data indicate that levels of folate-associated intermediates in cord blood during late pregnancy have significant consequences for the fetal epigenome.  相似文献   

9.
Folate deficiency in pregnancy is associated with neural tube defects, restricted fetal growth and fetal programming of diseases later in life. Fetal folate availability is dependent on maternal folate levels and placental folate transport capacity, mediated by two key transporters, Folate Receptor-α and Reduced Folate Carrier (RFC). We tested the hypothesis that intrauterine growth restriction (IUGR) is associated with decreased folate transporter expression and activity in isolated syncytiotrophoblast microvillous plasma membranes (MVM). Women with pregnancies complicated by IUGR (birth weight <3rd percentile, mean birth weight 1804±110 g, gestational age 35.7±0.61 weeks, n=25) and women delivering an appropriately-for gestational age infant (control group, birth weight 25th–75th centile, mean birth weight 2493±216 g, gestational age 33.9±0.95 weeks, n=19) were recruited and placentas were collected at delivery. MVM was isolated and folate transporter protein expression was measured using Western blot and transporter activity was determined using radiolabelled methyltetrahydrofolic acid and rapid filtration. Whereas the expression of FR-α was unaffected, MVM RFC protein expression was significantly decreased in the IUGR group (−34%, P<.05). IUGR MVM had a significantly lower folate uptake compared to the control group (−38%, P<.05). In conclusion, placental folate transport capacity is decreased in IUGR, which may contribute to the restricted fetal growth and intrauterine programming of childhood and adult disease. These findings suggest that continuation of folate supplementation in the second and third trimester is of particular importance in pregnancies complicated by IUGR.  相似文献   

10.
11.
12.
Folate hydrolase 1 (FOLH1) gene encodes intestinal folate hydrolase, which regulates intestinal absorption of dietary folate. Previous studies on the association between polymorphisms rs202676 and rs61886492 and the risk of neural tube defects (NTDs) were inconclusive. A case–control study of women with NTD-affected pregnancies (n = 160) and controls (n = 320) was conducted in the Chinese population of Lvliang, a high-risk area for NTDs. We genotyped the polymorphic sites rs202676 and rs61886492 and assessed maternal plasma folate and total homocysteine (tHcy). Our results showed that in case group, plasma folate concentrations were 18 % lower compared with those of control group (8.32 vs. 6.79 nmol/L, p = 0.033) and tHcy concentrations were 17 % higher (10.47 vs. 12.65 μmol/L, p = 0.047). Almost all samples had the rs61886492 GG genotype (99.78 %). The result showed that the frequency of GG genotype in rs202676 was significantly higher in group with multiple NTDs than in controls (p = 0.030, OR = 2.157, 95 % CI, 1.06–4.38). The multiple-NTD group showed higher maternal plasma concentrations of tHcy (10.47 vs. 13.96 μmol/L, p = 0.024). The GG genotype of rs202676 had a lower maternal folate and higher tHcy concentrations than other genotypes with no significant differences. The result of structural prediction indicated that this variation might change the spatial structure of the protein. These results suggested that the maternal polymorphism rs202676 was a potential risk factor for multiple NTDs in this Chinese population. The allele G might affect maternal plasma folate and tHcy concentration.  相似文献   

13.
A low serum folate and high homocysteine phenotype is associated with an increased risk of neural tube defects (NTDs), cardiovascular diseases and other pathologies. Thus defining both genetic and non-genetic factors that may impact folate/homocysteine metabolism will enhance our understanding of the etiologic mechanisms underlying these conditions and facilitate risk assessment. Dihydrofolate reductase catalyzes the reduction of folic acid to dihydrofolate and thereafter to tetrahydrofolate. The impact of the dihydrofolate reductase (DHFR) c.86 + 60_78 insertion/deletion (ins/del) polymorphism on folate and homocysteine concentrations was analyzed using data from healthy young adults from Northern Ireland, collected as part of visit three of the Young Hearts Project. Among men the DHFR c.86 + 60_78 polymorphism was not significantly associated with serum or red blood cell folate concentrations, or with homocysteine concentrations. Among women the DHFR c.86 + 60_78 polymorphism explained 2% of the variation in RBC folate levels and 5% of the variation in serum folate levels, but did not appear to have an independent effect on homocysteine. Relative to women with the DHFR c.86 + 60_78 ins/ins and ins/del genotypes, del/del homozygotes had increased serum and red blood cell folate concentrations and may therefore be at decreased risk of having offspring affected by NTDs and of other adverse reproductive and health outcomes attributable to low folate.  相似文献   

14.
Elevated serum total homocysteine (tHcy) levels are associated with increased risk for cardiovascular disease and dementia. The prevalence rates of homozygous mutants among Japanese women (n = 300) were 17.3%, 1.3%, 18.6%, and 5.3% for methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, reduced folate carrier (RFC-1) A80G, and methionine synthase (MS) A2756G, respectively. The tHcy value was significantly lower (p < 0.001) in young women with CC or CT of MTHFR than with TT (10.9+/-4.7 micromol/L) (n =250). Diversities of serum folate and tHcy in women with 23 combinations of different alleles at low folate intake converged to the highest (34.0+/-8.6 nmol/L) and lowest (7.6+/-1.5 micromol/L) levels, respectively, after folic acid (400 microg/day) supplementation. In the regression equation ( y= ax + b) of serum folate ( y nmol/L) plotted against mean folate intake ( x microg/day), the values of "a" were 0.032, 0.037, and 0.045 for individuals with CC, CT, and TT alleles, respectively, of MTHFR.  相似文献   

15.
We report that the maternal folate status can influence folate-mediated one-carbon metabolism and DNA methylation in the placenta. Thirty-six female Sprague-Dawley rats were divided into the following three dietary groups: folate-supplemented (FS; 8 mg/kg folic acid, n=12), homocystine- and folate-supplemented (HFS; 0.3% homocystine and 8 mg/kg folic acid, n=12) and homocystine-supplemented and folate-deficient (HFD; 0.3% homocystine and no folic acid, n=12). The animals were fed their experimental diets from 4 weeks prior to mating until Day 20 of pregnancy (n=7-9 per group). The HFS diet increased the plasma homocysteine and placental DNA methylation but did not affect plasma folate, vitamin B-12, S-adenosyl methionine (SAM) or S-adenosyl homocysteine (SAH) levels, or the SAM/SAH ratio in the liver and placenta compared with the FS diet. The HFD diet induced severely low plasma folate concentrations, with plasma homocysteine levels increasing up to 100 micromol/L, and increased hepatic SAH and decreased placental SAM levels and SAM/SAH ratio in both tissues, with a concomitant decrease in placental DNA methylation. Placental DNA methylation was significantly correlated with placental (gamma=0.819), hepatic (gamma=0.7) and plasma (gamma=0.752) folate levels; plasma homocysteine level (gamma=-0.688); hepatic SAH level (gamma=-0.662) and hepatic SAM/SAH ratio (gamma=0.494). These results suggest that the maternal folate status in hyperhomocysteinemic rats influences the homeostasis of folate-mediated one-carbon metabolism and the methyl pool, which would, in turn, affect placental DNA methylation by altering the methylation potential of the liver.  相似文献   

16.
Hamid A  Wani NA  Rana S  Vaiphei K  Mahmood A  Kaur J 《The FEBS journal》2007,274(24):6317-6328
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The intestinal folate uptake is tightly and diversely regulated, and disturbances in folate homeostasis are observed in alcoholism, attributable, in part, to intestinal malabsorption of folate. The aim of this study was to delineate the regulatory mechanisms of folate transport in intestinal absorptive epithelia in order to obtain insights into folate malabsorption in a rat model of alcoholism. The rats were fed 1 g.kg(-1) body weight of ethanol daily for 3 months. A reduced uptake of [(3)H]folic acid in intestinal brush border membrane was observed over the course of ethanol administration for 3 months. Folate transport exhibited saturable kinetics and the decreased intestinal brush border membrane folate transport in chronic alcoholism was associated with an increased K(m) value and a low V(max) value. Importantly, the lower intestinal [(3)H]folic acid uptake in ethanol-fed rats was observed in all cell fractions corresponding to villus tip, mid-villus and crypt base. RT-PCR analysis for reduced folate carrier, the major folate transporter, revealed that reduced folate carrier mRNA levels were decreased in jejunal tissue derived from ethanol-fed rats. Parallel changes were observed in reduced folate carrier protein levels in brush border membrane along the entire crypt-villus axis. In addition, immunohistochemical staining for reduced folate carrier protein showed that, in alcoholic conditions, deranged reduced folate carrier localization was observed along the entire crypt-villus axis, with a more prominent effect in differentiating crypt base stem cells. These changes in functional activity of the membrane transport system were not caused by a general loss of intestinal architecture, and hence can be attributed to the specific effect of ethanol ingestion on the folate transport system. The low folate uptake activity observed in ethanol-fed rats was found to be associated with decreased serum and red blood cell folate levels, which might explain the observed jejunal genomic hypomethylation. These findings offer possible mechanistic insights into folate malabsorption during alcoholism.  相似文献   

17.
Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell lines derived from the normal human colon, HCEC, NCM356 and NCM460, were grown for 32–34 days in media containing 25, 50, 75 or 150 nM folic acid, and the expression of genes involved in cell-cycle checkpoints, intracellular signaling, folate uptake and cell adhesion and migration was determined. Expression of Folate Receptor 1 was increased with decreasing media folate in all cell lines, as was p53, p21, p16 and β-catenin. With decreasing folate, the expression of both E-cadherin and SMAD-4 was decreased in NCM356. APC was elevated in NCM356 but unchanged in the other lines. No changes in global methylation were detected. A significant increase in p53 exon 7–8 strand breaks was observed with decreasing folate in NCM460 cells. The changes observed are consistent with DNA damage-induced activation of cell-cycle checkpoints and cellular adaptation to folate depletion. Folate-depletion-induced changes in the Wnt/APC pathway as well as in genes involved in cell adhesion, migration and invasion may underlie observed relationships between folate status and cancer risk.  相似文献   

18.
Two genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) can influence the plasma homocysteine (Hcy) levels, especially in the presence of an inadequate folate status. The aim of this study was to evaluate the frequencies of C677T and of A1298C MTHFR polymorphisms and their correlation with Hcy and serum folate concentrations in a population of blood donors living in a region of middle‐southern Italy (the Molise Region). One hundred ninety seven blood donors were studied for total plasma Hcy, serum folate and C677T and A1298C MTHFR genotypes. The frequency of C677T genotypes was 20.8% (CC), 49.8% (CT) and 29.4% (TT); for the A1298C genotypes: 48.7% (AA), 43.7% (AC) and 7.6% (CC). Hcy and serum folate concentrations were significantly different among genotypes of the C677T polymorphism (CC versus CT versus TT: <0.0001 both for Hcy and folate), with Hcy values increasing, and serum folate decreasing, from CC to TT subjects. Regarding to A1298C polymorphism, the difference among genotypes (AA versus AC versus CC; p: 0.026 for Hcy and 0.014 for serum folate), showed an opposite trend for both parameters, with Hcy higher in the wild‐type and lower in the homozygotes and serum folate higher in CC than in AA subjects. In conclusion, we found a high frequency of MTHFR allele associated with high level of Hcy and low levels of folate in an Italian southern population. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Trinh BN  Ong CN  Coetzee GA  Yu MC  Laird PW 《Human genetics》2002,111(3):299-302
The thymidylate synthase gene ( TYMS or TS) encodes a tightly regulated enzyme that catalyzes the conversion of deoxyuridylate to thymidylate, and contains a tandem repeat polymorphism that affects expression of the enzyme. We have investigated the relationship between TYMS genotype and plasma concentrations of homocysteine and folate in a cohort of 505 Chinese from Singapore. TYMS 3/3 genotype was associated with reduced plasma folate and, among individuals with low dietary folate intake, with elevated plasma homocysteine levels. These associations were independent of the well-established methylenetetrahydrofolate reductase ( MTHFR) C677T genotype effects on plasma folate and homocysteine levels. Our results suggest that TYMS and MTHFR compete for limiting supplies of folate required for the remethylation of homocysteine. These genetic determinants of plasma folate and homocysteine levels may be useful in identifying individuals at increased risk for cardiovascular disease.  相似文献   

20.
Folate is thought to contribute to health and development by methylation regulation. Long interspersed nucleotide element‐1 (LINE‐1), which is regulated by methylation modification, plays an important role in sculpting the structure and function of genomes. Some studies have shown that folate concentration is related to LINE‐1 methylation. However, the direct association between LINE‐1 methylation and folate deficiency remains unclear. To explore whether folate deficiency directly induced LINE‐1 hypomethylation and to analyze the relationship between folate concentration and the LINE‐1 methylation level, mouse ESCs were treated with various concentrations of folate which was measured by chemiluminescent immunoassay, and the homocysteine content was detected by ELISA. LINE‐1 methylation was examined by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry at various time points. Concurrently, cell proliferation and differentiation were observed. The result showed that the intracellular folate decreases under folate‐deficient condition, conversely, homocysteine content increased gradually and there was a negatively correlated between them. Folate insufficiency induced LINE‐1 hypomethylation at the lowest levels in folate‐free group and moderate in folate‐deficient group, compared with that in the folate‐normal group at day 18. Moreover, LINE‐1 methylation level was positively correlated with folate content, and negatively correlated with homocysteine content. At corresponding time points, proliferation and differentiation of mouse ESCs showed no alteration in all groups. Our data indicated that folate deficiency affected the homeostasis of folate‐mediated one‐carbon metabolism, leading to reduced LINE‐1 methylation in mouse ESCs. This study provides preliminary evidence of folate deficiency affecting early embryonic development. J. Cell. Biochem. 114: 1549–1558, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号