首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to yield some insights into the planktonic food web structure of new reservoirs, size‐fractionated biomass and productivity of phytoplankton were examined from 1996 to 1997 (following the 1995 flooding of the Sep Reservoir, Puy‐de‐Dôme, France), in relation to nutrients (P, N) and metazooplankton (Rotifers, Cladocera, Copepods). Autotrophic nanoplankton (ANP, size class 3–45 μm) dominated the phytoplankton biomass (as Chlorophyll a) and production, while autotrophic picoplankton (APP, 0.7–3 μm) exhibited the lowest and relatively constant biomass and production. Cells of the autotrophic microplankton (AMP, >45 μm) were considered inedible for planktonic herbivores. The production‐biomass diagram for the different size classes and the positive correlation between APP production and ANP + AMP production suggested that grazing was potentially more important than nutrients in shaping the phytoplankton size structure. Metazooplankton biomass was low compared to other newly flooded reservoirs or to natural lakes with phytoplankton biomass similar to that of the Sep Reservoir. This resulted in low ratios (metazooplankton to edible phytoplankton) both in terms of production (average 0.43% in 1996 and 0.76% in 1997) and biomass, suggesting that only a small fraction of phytoplankton was directly consumed by metazooplankton. We suggest that the observed low ratios in the Sep Reservoir, reflect possible low metazooplankton inputs in the main influents, changes in hydrologic conditions and a high potential role of microheterotrophs. The latter role was supported by (i) the positive inter‐annual correlation between ciliates and phytoplankton, (ii) the significant and negative correlations between ciliates and metazooplankton, and (iii) the significant and negative correlations between total metazooplankton biomass and total phosphorus (TP), whereas neither TP nor total metazooplankton biomass was correlated with phytoplankton variables.  相似文献   

2.
Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important amount of matter and energy flows through the "microbial loop" and food web, shortly after the flooding of a reservoir.  相似文献   

3.
The spatial distribution of phytoplankton cell abundance, carbon(C) biomass and chlorophyll a (Chl a) concentration was analysedduring three summers (1996, 1997 and 1999) in a seasonal sea-icearea, west of the Antarctic Peninsula. The objective of thestudy was to assess interannual variability in phytoplanktonspatial distribution and the mechanisms that regulate phytoplanktonaccumulation in the water column. Phytoplankton C biomass andChl a distributions were consistent from year to year, exhibitinga negative on/offshore gradient. The variations in C concentrationhad a close and non-linear relationship with the upper mixedlayer depth, suggesting that the vertical mixing of the watercolumn is the main factor regulating phytoplankton stock. Themagnitude of C gradients was 5-fold higher during 1996 thanduring 1997 and 1999. This was ascribed to interannual variationsin the concentration of diatom blooms in the region influencedby sea-ice melting. Vertical distribution of the phytoplankton,as estimated from Chl a profiles, also varied along an on/offshoregradient: Chl a was distributed homogeneously in the upper mixedlayer in coastal and mid-shelf stations and concentrated inthe deep layer (40–100 m) occupied by the winter waters(WW, remnants of the Antarctic surface waters during summer)in more offshore stations. The region with a deep Chl a maximumlayer (DCM layer) was dominated by a phytoplankton assemblagecharacterized by a relatively high concentration of diatoms.The extent of this region varied from year to year: it was restrictedto pelagic waters during 1996, extended to the shelf slope during1997 and occupied a major portion of the area during 1999. Itis hypothesized that iron depletion in near surface waters dueto phytoplankton consumption, and a higher concentration inWW, regulated this vertical phytoplankton distribution pattern.Furthermore, we postulate that year-to-year variations in thespatial distribution of the DCM layer were related to interannualvariations in the timing of the sea-ice retreat. The similaritybetween our results and those reported in literature for otherareas of the Southern Ocean allows us to suggest that the mechanismsproposed here as regulating phytoplankton stock in our areamay be applicable elsewhere.  相似文献   

4.
Three cruises were conducted in the Irish Sea during May, Juneand July 2001 to determine the variability in inherent opticalproperties (IOP), photo physiological parameters and primaryproduction (PP) and to assess the effect of IOP on satellitePP algorithms. The absorption coefficients of phytoplankton(aph), coloured dissolved organic material (aCDOM) and nonalgalparticles (aNAP) were higher during May than June and July.A radiative transfer model was used to model the in-water lightfield based on aph (case 1) and aph, aCDOM and aNAP (case 2).When PP was compared using these light fields, there was a 46%difference in estimates. The case 2 in-water light field wascoupled to a wavelength resolving satellite model of PP (PPcase2)and had a low root mean square error (RMS) (0.27 log10PP) comparedwith in situ PPcase2. IOP absorption, especially aCDOM, hada significant effect on the performance of this algorithm, butscattering of light by suspended particulate material had asmall effect. A look-up table was generated from the in situaph, aCDOM and aNAP measurements, which can be used in conjunctionwith satellite products to produce satellite maps of PP. Therewas <25% difference between in situ PPcase2 and the satellitePP maps, which suggests that they could be produced routinelyand accurately to monitor PP in the Irish Sea and other coastaland estuarine areas.  相似文献   

5.
Respiratory electron transport system (ETS) activity was measuredin plankton samples (<200 µm) collected in the NW AlboranSea. Sampling was carried out during seasonal cruises (summerand autumn 2003 and winter and spring 2004) in 12 stations locatedin transects off the coast of Malaga (southern Spain). Thiswork reports for the first time seasonal variations of the Arrheniusactivation energy (Ea) as well as being the first study to addressCO2 balance in the NW Alboran Sea. These variations were relatedto changes in the phytoplankton community assemblage, whichcould ultimately be caused by the seasonal variability of hydrologicalconditions. ETS activity was significantly higher in summer,coinciding with a higher chlorophyll a (Chl a) concentrationand relatively high levels of particulate organic matter. TheETS:Chl atotal ratios were low during the four seasons, suggestinga high contribution of autotrophic phytoplankton to the respiratoryactivity of planktonic community. Respiratory CO2 production(RCP) calculated from ETS activity ranged from 4.6 to 28.1 mgC m–3 day–1 during the four cruises. Chl a-specificRCP was lower than the maximum photosynthetic rates reportedin the literature for the studied area, suggesting that primaryproduction (PP) and respiration in the water column might beunbalanced.  相似文献   

6.
The two parameters of the hyperbolic tangent equation, Pm and, were estimated from in situ vertical profiles of primary productionusing mesocosm data along a nutrient gradient. The parameters,derived from 4-h (around noon) 14C incubations, were used togetherwith the photosynthesis-light curve and hourly solar radiationdata to calculate daily primary production rates (Pd). Approximately40% of the daily production occurred in the 4 h around noon.Considering parameter uncertainty, there was no indication ofan increase in variation in production with increased nutrientloading, nor did biomass-specific P-I parameters increase. Annualproduction ranged from 82 to 901 g C m–2 year–1and was highest in the highest nutrient treatment tank. Dailyproductivity ranged from 0.02 to 9.1 g C m–2 day–1and was significantly correlated, in all treatments, with acomposite parameter BI0/k (where B is phytoplankton biomass;I0 is daily radiation and k is the extinction coefficient).Linear regressions of Pd against BI0/k indicated that much ofthe variability (86%) in productivity was explained by lightavailability and phytoplankton biomass. Two approaches for predictingproductivity were compared: (i) predicting production directlyfrom environmental variables (i.e. BI0/k) and (ii) predictingthe parameters of the P-I curve from environmental variablesand using these to calculate daily production.  相似文献   

7.
The life cycle, population dynamics, growth and secondary productionof the land snail C. vindobonensis were studied in northernGreece. Demographic analysis of the populations of C. vindobonensisrevealed that a) three cohorts were present in the field throughoutthe year, b) the reproductive period started in late April-Mayand the newly hatched snails appeared in the beginning of June,and c) increased growth rates were observed during spring andearly summer, but also during autumn for the newly hatched snails. According to von Bertalanffy's method C. vindobonensis needs7 years to attain its maximum size measured in the field. Mortalityrate is very high during the first year of life, while lifeexpectancy is higher during the second year of life and decreasesafterwards. Net reproductive rate (Ro) was equal to 3.1 andthe finite capacity for increase (antilogerc) was equal to 1. Estimated annual secondary production with Hynes' frequencymethod revealed a mean standing crop (B) of 0.99 g/m2/year anda production (P) of 1.3 ± 0.11 g/m2/year. Annual turnoverratio (P/B) was equal to 1.31. (Received 7 April 1997; accepted 2 October 1997)  相似文献   

8.
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae).  相似文献   

9.
Triplicate in situ enclosures containing plankton from a smallglacial kettle lake were either untreated (pH>8) or wereacidified to pH 6.5, 5.5 or 4.5 over 7 days using H2SO4. Planktonsize spectra were constructed, in order to quantify acidificationimpacts on mean phytoplankton size (MESDp), mean zooplanktonsize (MESDz), and phytoplankton-zooplankton size difference(the P-Z distance). Acidification to pH 6.5 did not significantlyaffect the size spectrum parameters. However, at pH 5.5 and4.5, MESDp increased, MESDz declined, and the P-Z distance wasgreatly reduced. These changes reflected a simultaneous shiftto large phytoplankton (Peridinium) and small zooplankton (rotifersand nauplii) dominance at low pH.  相似文献   

10.
Potential carbon-specific growth rates of phytoplankton wereestimated from a series of measurements of photosynthetic radio-carbonuptake over 4- and 24-h exposure periods in the light fieldsof three large limnetic enclosures (‘Lund Tubes’),each providing different limnological and trophic conditions.Photosynthetic behaviour and short-term, chlorophyll-specificcarbon-fixation rates conformed to well-established criteriabut, over 24 h, the net retention represented 23–82% ofthe carbon fixed during the daylight hours. Potential mean growthrates (k'p, of the photo-autotrophic community were calculatedas the net exponential rates of daily carbon-accumulation relativeto derived, instantaneous estimates of the cell carbon-content.Apparent actual community growth rates (k'D were calculatedas the sum of the exponential rates of change of each of themajor species present, corrected for probable rates of in situgrazing and sinking, and expressed relative to the fractionof total biomass for which they accounted. The correspondingvalues were only occasionally similar, k'p generally exceedingK'D by a factor of between 1 and 30 or 1 and 14, depending uponthe carbon:chlorophyll ratio used. The ratio, K'p/K'D was foundto vary inversely both to k'D and to kn, the net rate of changein phytoplankton biomass, suggesting that measured carbon fixationrates merely represent a capacity for cellular increase which,owing to other likely limitations upon growth, is seldom realized.Apparent rates of loss of whole cells do not account for theloss of carbon; that the ‘unaccounted’ loss rates(K'pK'D varied in direct proportion to K'p (i.e., losseswere least when chlorophyll-specific photosynthetic productivitywas itself limited) is best explained by physiological voidingof excess carbon (for instance, by respiration, photorespiration,excretion) prior to the formation of new cells.  相似文献   

11.
The relationship between chlorophyll a (Chl a) and primary productivity(PP) in the uppermost water layer and the water column-based(0–15 m) integral values of those variables were examinedusing measurements taken in Lake Kinneret (Israel) from 1990to 2003. In 81% of all Chl a profiles examined, the distributionwas fairly uniform within the entire 0–15 m water column,and 12.3% of instances showed a prominent subsurface maximum,when the lake phytoplankton was dominated by the dinoflagellatePeridinium gatunense. Chl a can be reliably estimated by remotesensing techniques in the productive and turbid water of LakeKinneret, since Chl a concentration at surface layers can beextrapolated to the entire water column. Light vertical attenuationcoefficient average for wavelengths from 400 to 700 nm, Kd,ranged from 0.203 to 1.954 m–1 and showed high degreeof temporal variation. The maximal rate of photosynthetic efficiency,PBopt [average 3.16 (±1.50)], ranged from 0.25 to 8.85mg C m–3 h–1 mg Chl a–1. Using measured dataof Chl a, PBopt, and light as an input, a simple depth-integratedPP model allowed plausible simulation of PP. However, a lackof correlation between photosynthetic activity and temperature(or other variable with remotely sensed potential) renders theuse of models that require input of photosynthetic efficiencyto calculate integrated PP of little value in the case of productiveand turbid Lake Kinneret.  相似文献   

12.
Recently, it has been shown that ratios of chlorophyll a toparticulate phosphorus (Chl a/PP) and chlorophyll a to particulatenitrogen (Chl a/PN) were significantly higher in eutrophic thanoligo/mesotrophic waters in 17 lakes on the central volcanicplateau, North Island, New Zealand. This difference was thoughtto be due to an increase in the chlorophyll a content of phytoplanktonin these eutrophic lakes. Corresponding measurements of chlorophylla and phytoplankton cell volume made during this study do notsupport this hypothesis. However, ratios of chlorophyll a toadenosine triphosphate and estimates of percentage phytoplanktonbiomass were significantly higher (P<0.05) in our eutrophicthan oligo/mesotrophic samples, suggesting that Chl a/PP andChl a/PN may be high in eutrophic waters simply because phytoplanktoncomprise more of the total microbial biomass. This hypothesisis supported by a strong linear relationship (r=0.88, P<0.001)between Chl a/PP and percentage phytoplankton biomass in sixof our study lakes where corresponding measurements were made.  相似文献   

13.
Sinking losses of phytoplankton in closed limnetic systems   总被引:8,自引:0,他引:8  
Specific algal recoveries from sediment traps of two differentdesigns and from mud surface deposits of large experimentalenclosures (Lund Tubes) were monitored during 1978 and are analyzedin relation to the vertical and temporal distribution of tendominant phytoplankton populations. Sedimentation accounts fordiffering proportions of the total loss of biomass for differentalgae: between 28 and 100% of diatoms; 15–95% of Eudorina;<4% of populations of small algae (spp. ofAnkyra, Chromulina,Cryptomonas). Rates of diatom loss are also derived from thecomparison of net rates of change (kn) and the silica uptake-derivedgrowth rate (k1); intrinsic sinking behaviour may be specificallyregulated in relation to growth conditions. Implications inthe calculation of sedimentary losses and their impact uponthe seasonal periodicity of phytoplankton are briefly discussed.  相似文献   

14.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

15.
Niklas  Karl J. 《Annals of botany》1993,72(5):475-483
Perianth MP, gynoecium MG, and androecium MA dry-weight biomass(in g) of 39 species of perfect flowers was measured. Thesedata were pooled with published data from an additional 51 speciesand used to determine size-dependent variations in (MG and MA)in terms of the hypothesis that the quotient of MG and MA exceeds1·0 for out-breeding (xenogamous) species and less than1·0 for in-breeding (autogamous) species. Ordinary leastsquare regression of the pooled data (n = 90) showed MG = 0·118M0·916P (r2 = 0·884) and MA = 0·186 M0·975P(r2 = 0·865), indicating that the biomass of the gynoeciumproportionally decrease as floral size increases. The exponentsof these regressions indicate that the ratio of gynoecial toandroecial biomass decreased with increasing floral size suchthat comparatively small flowers (MP < 0·0021 g) hadMG/MA > 1·0 (predicted for 'out-breeders') while comparativelylarger flowers (MP > 0·0021 g) had MG /MA < 1·0(predicted for 'in-breeders'). Thus, on average, the type ofbreeding system was a size-dependent phenomenon. To test whether the biomass of a floral organ-type is a legitimateindicator of gender reproductive effort, the biomass (in g)of stamen filaments Mm and anther sacs MAS of 39 species wasdetermined. Least square regression of these data showed MAS= 0·188 M0·854fil (r2 = 0·967), indicatingthat species with larger stamen filaments, on the average, boreproportionally smaller anther sacs and thereby cautioning againstthe uncritical use of the allocation of biomass to floral organ-typeas a strict gauge of gender-function investment. To determine whether the loss of one gender-function resultsin proportional reallocation of biomass to the remaining gender-function,the size-dependency of androecial and gynoecial biomass wasdetermined for a total of 33 perfect and imperfect flowers ofCucumis melo. Regression of the data obtained from perfect flowersyielded MA = 0·402 M1·47P (r2 = 0·898)and MG = 4·63 M1·36P (r2 = 0·842). SinceMG/MA M0·11P , the biomass allocation to the gynoeciumrelative to the androecium decreased with increasing floralsize. This result was consistent with the broad interpecificcomparison based on 90 species with perfect flowers . Regressionof the data for imperfect flowers yielded MA = 0·151M1·02P (r2 = 0·675) and MG = 4·68 M1·47P(r2 = 0·996), indicating a near allometric relation forthe androecium and a strong positive anisometry for the gynoecium.Thus, for flowers of comparable size, a loss of female genderobtains a modest to significant again in androecial biomasswhereas the loss of male gender yields only a slight increasein gynoecial biomass. Collectively, the results of these studies indicate that biomassallocation patterns are size-dependent phenomena whose complexitieshave been largely ignored in the literature.Copyright 1993,1999 Academic Press Allometry, floral biomass, reproduction  相似文献   

16.
  池杉(Taxodium ascendens)属于典型的耐水树种, 掌握其根系对淹水环境的生态适应机制对于研究林木耐水机理十分重要。通过对江苏省里下河低湿地17年生池杉在高水位(6~10月淹水, 全年平均地下水位-5 cm)、中水位(8~9月淹水, 全年平均地下水位-18 cm)和低水位(常年不淹水, 全年平均地下水位-41 cm)条件下的根系进行调查, 结果表明, 池杉在高水位条件下形成细长的气生根, 气生根依附于树干北侧或潜伏于树干外表皮内侧和纵裂的树皮缝隙中; 中水位池杉能形成直径(7.9±2.2) cm、高(7.7±2.7) cm的膝根, 每株立木拥有膝根数(5.8±1.7)个; 低水位池杉也能形成膝根, 但个体小、数量少。林木地下和地上生物量均呈现出明显的高水位<中水位<低水位的趋势, 但是地下/地上生物量的比值却呈相反趋势, 表明池杉耐水性虽然很强, 长期处于较高水位时生长会明显受抑, 尤其是地上生物量生长受抑更显著。高、中和低水位池杉的地径/胸径之比分别是2.66±0.11、2.08±0.10和1.75±0.08, 说明水位较高的环境能促进树干基部的相对粗生长。长期淹水导致地下根的容重降低, 但是气生根和膝根的容重却明显大于地下根。高、中水位池杉细根的Fe和Mn浓度显著高于低水位, 其中Fe的浓度相差10倍以上, 但是叶的Fe、Mn浓度在不同水位之间没有显著差异。膝根的呼吸具有明显的季节差异, 8月和9月平均每个膝根的呼吸速率为2.1~2.5 mgCO2&#8226;h–1, 6月和11月为0.7~0.9 mgCO2&#8226;h–1, 3月为0.4 mgCO2&#8226;h–1; 膝根吸收O2的摩尔数是释放CO2摩尔数的4.6倍, 说明膝根吸收的O2除了供自身呼吸, 大部分是提供给地下根利用。池杉之所以具有较强的耐水性, 与其在缺氧环境中能形成气生根和膝根、树干基部膨大和根系容重降低等有利于改善根系通气条件的生态适应机制密切相关。  相似文献   

17.
Two mesocosm experiments were carried out to investigate thedynamic ef fects of nutrients (nitrogen and phosphorus) andplanktivorous fish additions on phytoplankton strategies anddiversity. The phylogenetic and functional approaches were usedto understand phytoplankton ecology in shallow Mediterraneanlakes. The experimental approach is new for the study of algalfunctional groups. Nutrient loading and fish stocks enhancedbiomass of small algae but decreased phytoplankton diversityand species richness. Faster species replacement and fluctuationsin diversity occurred above loadings of 1 µM P and 21µM N. Mesotrophic conditions favoured a diverse pool ofspecies, including nostocales and unicellular flagellate algae(functional groups Sn, S1, L0, Y, Reynolds et al., 2002). C-strategistchlorophytes (small algae from functional group X1) dominatedmid-successional assemblages with good light and accessiblenutrients. High nutrient concentrations, dim light, presenceof organic matter and of larger zooplankton favoured to functionalgroups S1 of oligophotic filamentous cyanobacteria and J ofmixotrophic Scenedemus species. Intermediate nutrient levelswith total phosphorus (TP) 10 µM, water quiescence, transparencyand smaller zooplankton prompted dominance of chroococcal cyanobacteria(functional groups X1 and K). Resulting patterns agree and reinforcethe validity of plankton functional groups associated with warm,shallow enriched systems, although some changes in the groupsare suggested in relation to the structuring role of nutrientsand grazing on the functional scheme for phytoplankton.  相似文献   

18.
利用新疆塔城1989~1996年8年的麦双尾蚜Diuraphis noxia (Mordvilko)发生程度与16个气象因子进行相关性分析,通过逐步回归筛选因子,确定麦双尾蚜发生量预测模型:logY=84100-0.1033RH5-0.0253R5,其中:Y为麦双尾蚜发生百株蚜量;RH5为5月份的相对湿度(%);R5为5月份的降水量(mm)。应用该模型预测1997~1998年麦双尾蚜的发生程度,与实际发生情况基本吻合。  相似文献   

19.
A model of carbon isotope discrimination by phytoplankton wasdeveloped which took into account the occurrence of a carbon-concentratingmechanism (CCM). A simple equation was obtained for the modelinvolving CO2 active transport. In the case of HCO3 activetransport, another equation was developed based on a seriesof approximations. The former equation was used to analyse reportedand newly obtained data from culture experiments and field observationsin both freshwater and marine environments. In most cases, alinear relationship between a combined parameter, (1–f)Ci,which was made up of the relative contribution of active CO2uptake to total carbon uptake (f) and the intracellular CO2concentration (Ci), and CO2 concentration in bulk solution (Ce)was obtained as (1–f)Ci = ace–b, with a high correlationcmfficient (r2>0.9). The slope a is suggested as a measureof the ratio of diffusive to total (diffusive+active) CO2 transport,while bla represents CO2 demand.  相似文献   

20.
High soil resistance to root penetration (measured as penetrometerresistance, Rs slows down leaf growth and reduces mature leafsize in wheat seedlings {Triticum aestivum L.). Underlying changesin the kinetics of cell partitioning and expansion and in thesize and organization of mature cells were reported in companionpapers (Beemster and Masle, 1996; Beemster et al., 1996). Inthe present study, the relationships between apex growth, primordiuminitiation and expansion were analysed for plants grown at contrastingRs, focusing on a leaf whose whole development proceeded afterthe onset of root impedance (leaf 5). High Rs reduced the rates of apex and leaf development, butdid not appear to have immediate effects on the pattern of developmentof the newly initiated phytomers. During an initial short period,the rate of development of a leaf primordium and associatednode were related to plastochronic age, according to similarrelationships (slopes) at the two Rs. Effects on developmentalpatterns were first detected on phytomer radial expansion duringplastochron 2. The ontogenetic pattern of leaf elongation wasaffected later, during the next few plastochrons preceding leafemergence (‘post-primordial stage’). It is concludedthat a reduction in the number of formative divisions and inthe number of proliferative cells along the intercalary mer-istemreported earlier (Beemster and Masle, 1996; Beemster et al.,1996) is not related to the size of the apical dome at leafinitiation nor to the size and number of meristematic cellsinitially recruited to the leaf primordium, which were all unaffectedby Rs. Rather they are generated at the primordial and post-primordialstages. Key words: Wheat, apex development, leaf primodium development, mature leaf width, root impedance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号