首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of two inhibitors of cholesterol biosynthesis, triparanol and AY 9944, on peripheral nerve myelination, was studied. Suckling mice were intraperitoneally injected with both drugs on 3 consecutive days and were sacrificed 6 hr after the last injection; others were suckled by an injected mother and sacrificed at 2½ days of age. A single mouse which had been injected with both drugs at 1, 2, and 3 days of age was sacrificed 2 wk after the last injection. Membranous and crystalline intracytoplasmic inclusions were observed in the Schwann cells of the sciatic nerves of all the experimental animals. Both the number of unmyelinated single axons and the number of myelin lamellae around each myelinating axon in the sciatic nerves were recorded for treated mice and of mice suckled by treated mothers. The sciatic nerve of the experimental mice contained a larger proportion of unmyelinated single axons and smaller numbers of myelin lamellae around the myelinating axons, when compared with age-matched controls. The results suggest that a decrease of endogenous cholesterol in suckling mice may affect peripheral nerve myelination in two ways: by retarding the "triggering" of myelination in unmyelinated axons and by decreasing the rate of myelination already in progress.  相似文献   

2.
In the sciatic nerve, two major classes of Schwann cells are present which differ in their capability to produce myelin. Myelinating Schwann cells surround most of the axons with the formation of a typical myelin sheath. Nonmyelinating Schwann cells serve to insulate individual axons without formation of myelin. These dissimilarities between the two types of Schwann cells provided an interesting model for studying mechanisms underlying myelination and the formation of contacts between axons and myelinating cells. It is demonstrated here that the endogenous lectin cerebellar soluble lectin (CSL), implicated in myelin stabilization and in formation of contact between axon and myelinating cells in the CNS and in the sciatic nerve, is undetectable in non-myelinating Schwann cells. In contrast, most axons surrounded by these cells contained the major axonal glycoprotein ligand of CSL, a 31-kDa glycoprotein which is present in large amounts. The possible relationship between the presence of CSL in Schwann cells and their capacity to interact with axons and to produce myelin are discussed.  相似文献   

3.
Biochemical and morphological studies were done on a new trembling mutant hamster CBB. The yield of myelin from the mutant was 30 and 40% of the control at 46 and 140 days of age, respectively, but myelin composition and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activity were normal. Morphologically, about 18% of the axons were myelinated in the mutant optic nerve at 46 days of age, in which the myelinated fibers were those with larger diameters (more than 0.6 micron), while the control had a peak at 0.4 micron in diameter. The ultrastructure and thickness of compact myelin lamellae in the mutant were normal. Myelination and the structure of peripheral nerve myelin appeared normal. The results indicate that the essential defect is the delay and arrest of myelination in the CNS, which is probably caused by either a decreased rate of synthesis of myelin components in oligodendrocytes or a defect in the oligodendrocyte-axon recognition in smaller axons.  相似文献   

4.
During peripheral nerve myelination, Schwann cells sort larger axons, ensheath them, and eventually wrap their membrane to form the myelin sheath. These processes involve extensive changes in cell shape, but the exact mechanisms involved are still unknown. Neural Wiskott-Aldrich syndrome protein (N-WASP) integrates various extracellular signals to control actin dynamics and cytoskeletal reorganization through activation of the Arp2/3 complex. By generating mice lacking N-WASP in myelinating Schwann cells, we show that N-WASP is crucial for myelination. In N-WASP-deficient nerves, Schwann cells sort and ensheath axons, but most of them fail to myelinate and arrest at the promyelinating stage. Yet, a limited number of Schwann cells form unusually short internodes, containing thin myelin sheaths, with the occasional appearance of myelin misfoldings. These data suggest that regulation of actin filament nucleation in Schwann cells by N-WASP is crucial for membrane wrapping, longitudinal extension, and myelination.  相似文献   

5.
Retinal ganglion cell axons and axonal electrical activity have been considered essential for migration, proliferation, and survival of oligodendrocyte lineage cells in the optic nerve. To define axonal requirements during oligodendrogenesis, the developmental appearance of oligodendrocyte progenitors and oligodendrocytes were compared between normal and transected optic nerves. In the absence of viable axons, oligodendrocyte precursors migrated along the length of the nerve and subsequently multiplied and differentiated into myelin basic protein-positive oligodendrocytes at similar densities and with similar temporal and spatial patterns as in control nerves. Since transected optic nerves failed to grow radially, the number of oligodendrocyte lineage cells was reduced compared with control nerves. However, the mitotic indices of progenitors and the percentage of oligodendrocytes undergoing programmed cell death were similar in control and transected optic nerves. Oligodendrocytes lacked their normal longitudinal orientation, developed fewer, shorter processes, and failed to form myelin in the transected nerves. These data indicate that normal densities of oligodendrocytes can develop in the absence of viable retinal ganglion axons, and support the possibility that axons assure their own myelination by regulating the number of myelin internodes formed by individual oligodendrocytes.  相似文献   

6.
In the CNS, oligodendrocyte precursor cells differentiate into oligodendrocytes to wrap their plasma membranes around neuronal axons, generating mature neural networks with myelin sheaths according to spatial and temporal patterns. While myelination is known to be one of the most dynamic cell morphological changes, the overall intrinsic and extrinsic molecular cues controlling myelination remain to be fully clarified. Here, we describe the biphasic roles of Rnd2, an atypical branch of the Rho family GTPase, in oligodendrocyte myelination during development and after maturation in mice. Compared with littermate controls, oligodendrocyte-specific Rnd2 knockout mice exhibit decreased myelin thickness at the onset of myelination but increased myelin thickness in the later period. Larger proportions of Rho kinase and its substrate Mbs, the signaling unit that negatively regulates oligodendrocyte myelination, are phosphorylated at the onset of myelination, while their smaller proportions are phosphorylated in the later period. In addition, we confirm the biphasic role of Rnd2 through experiments with oligodendrocyte-specific Rnd2 transgenic mice. We conclude that Rnd2 positively regulates myelination in the early myelinating period and negatively regulates myelination in the later period. This unique modulator thus plays different roles depending on the myelination period.  相似文献   

7.
Searching for specific markers of neural crest-derived cell lineages, we immunized mice with glycoproteins purified from adult quail peripheral myelin. We obtained a monoclonal antibody that reacts with myelin and peripheral glial cells. This antibody, to Schwann cell myelin protein (SMP), is specific for the membranes of all Schwann cells, irrespective of whether they are associated with myelinated nerves. SMP persists on Schwann cells in long-term cultures in vitro, but is absent from satellite cells of peripheral ganglia, both in vivo and in vitro. The antigen (a protein doublet of Mr 75,000-80,000) is present in, but not restricted to, the myelin lamellae, since it is distributed along the whole myelinating Schwann cell membrane. In the CNS, SMP appears as a single band of Mr 80,000. SMP is first detectable by immunofluorescence at E6 in the quail, which is at least 6 days earlier than the first appearance of already described markers related to myelination.  相似文献   

8.
Summary The surface morphology of normal myelinated nerve fibres prepared in different ways for scanning electron microscopy has been studied and compared with the surface features of similar fibres undergoing retrograde changes. Nodes of Ranvier, paranodal specializations, artefactual fractures of the myelin, and the endoneurial collagen sheaths are described. A regular pattern of elevations, usually with a pitted or depressed surface seen on normal myelinated fibres after certain preparative procedures are thought to be artefacts produced during preparation and to be related to the neurokeratin network.Alterations in the surface structure of fibres central to long-standing nerve transections include irregular protuberances, serial surface corrugations and large swellings, all associated with demyelination. Fibres that have undergone retrograde degeneration consist of endoneurial tubes with focal swellings occupied by macrophages or myelin debris, together with fine unmyelinated and small myelinated regenerating axons. Strict centrifugal progression of myelination of regenerating axons was not observed.We thank Mr. R. A. Willis for his collaboration and for taking the SEM photographs of normal nerve fibres, and the Cambridge Scientific Instrument Co. Ltd. for permission to reproduce the SEM photographs of experimental nerve fibres. We also thank Dr. A. Boyde for access to his SEM and for helpful comments on interpretation of the scanning electron micrographs, Prof. J. Z. Young, Dr. P. K. Thomas, and Dr. R. H. M. King for discussion, and Messrs. P. Reynolds and D. Gunn for photography.A grant from the Muscular Dystrophy Group of Great Britain is gratefully acknowledged.  相似文献   

9.
10.
How Histone Deacetylases Control Myelination   总被引:1,自引:0,他引:1  
Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.  相似文献   

11.
The cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once. On the other hand, probabilistic analysis reveals that the observed juxtaposition of myelin internodes among common sets of axons by adjacent oligodendrocytes is highly unlikely to occur by chance. Our analysis may reveal a hitherto unknown level of communication between adjacent oligodendrocytes in the selection of axons for myelination. Together, our analyses provide novel insights into the mechanisms that define the spatial organization of myelin internodes within white matter at the single cell level.  相似文献   

12.
S M de Waegh  V M Lee  S T Brady 《Cell》1992,68(3):451-463
Studies in Trembler and control mice demonstrated that myelinating Schwann cells exert a profound influence on axons. Extensive contacts between myelin and axons have been considered structural. However, demyelination decreases neurofilament phosphorylation, slow axonal transport, and axonal diameter, as well as significantly increasing neurofilament density. In control sciatic nerves with grafted Trembler nerve segments, these changes were spatially restricted: they were confined to axon segments without normal myelination. Adjacent regions of the same axons had normal diameters, neurofilament phosphorylation, cytoskeletal organization, and axonal transport rates. Close intercellular contacts between myelinating Schwann cells and axons modulate a kinase-phosphatase system acting on neurofilaments and possibly other substrates. Myelination by Schwann cells sculpts the axon-altering functional architecture, electrical properties, and neuronal morphologies.  相似文献   

13.
14.
15.
The peripheral nerve contains both nonmyelinating and myelinating Schwann cells. The interactions between axons, surrounding myelin, and Schwann cells are thought to be important for the correct functioning of the nervous system. To get insight into the genes involved in human myelination and maintenance of the myelin sheath and nerve, we performed a serial analysis of gene expression of human sciatic nerve and cultured Schwann cells. In the sciatic nerve library, we found high expression of genes encoding proteins related to lipid metabolism, the complement system, and the cell cycle, while cultured Schwann cells showed mainly high expression of genes encoding extracellular matrix proteins. The results of our study will assist in the identification of genes involved in maintenance of myelin and peripheral nerve and of genes involved in inherited peripheral neuropathies.  相似文献   

16.
Nona  S.N.  Thomlinson  A.M.  Bartlett  C.A.  Scholes  J. 《Brain Cell Biology》2000,29(4):285-300
Fish optic nerve fibres quickly regenerate after injury, but the onset of remyelination is delayed until they reach the brain. This recapitulates the timetable of CNS myelinogenesis during development in vertebrate animals generally, and we have used the regenerating fish optic nerve to obtain evidence that it is the axons, not the myelinating glial cells, that determine when myelin formation begins. In fish, the site of an optic nerve injury becomes remyelinated by ectopic Schwann cells of unknown origin. We allowed these cells to become established and then used them as reporters to indicate the time course of pro-myelin signalling during a further round of axonal outgrowth following a second upstream lesion. Unlike in the mammalian PNS, the ectopic Schwann cells failed to respond to axotomy and to the initial outgrowth of new optic axons. They only began to divide after the axons had reached the brain. Shortly afterwards, small numbers of Schwann cells began to leave the dividing pool and form myelin sheaths. More followed gradually, so that by 3 months remyelination was almost completed and few dividing cells were left. Moreover, remyelination occurred synchronously throughout the optic nerve, with the same time course in the pre-existing Schwann cells, the new ones that colonised the second injury, and the CNS oligodendrocytes elsewhere. The optic axons are the only common structures that could synchronise myelin formation in these disparate glial populations. The responses of the ectopic Schwann cells suggest that they are controlled by the regenerating optic axons in two consecutive steps. First, they begin to proliferate when the growing axons reach the brain. Second, they leave the cell cycle to differentiate individually at widely different times during the ensuing 2 months, during the critical period when the initial rough pattern of axon terminals in the optic tectum becomes refined into an accurate map. We suggest that each axon signals individually for myelin ensheathment once it completes this process.  相似文献   

17.
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.  相似文献   

18.
Summary The optic tracts and centres of optic terminals of Rana temporaria have been investigated with silver impregnation techniques after unilaterally cutting the optic nerve and autoradiographically after injection of a mixture of tritiated amino acids into the vitreous body of the left eye.The observations on the course of the optic tracts and on the optic terminals in the thalamus and optic tectum are to a great extent in agreement with those of other authors. The probability of a retino-preoptic pathway is supported by the detection of fibres running in dorsal direction in front of the place where the optic nerve penetrates the brain. In horizontal sections these fibres can be seen deviating from the optic tract, covering a short distance in frontal direction and then turning upward under an angle of about 90 degrees. They disappear between the ventral aldehyde-fuchsin positive cells of the preoptic nucleus. The ventral and median parts of the ipsilateral preoptic nucleus contain fragments of degenerated fibres.Autoradiographic data are also in favour of the presence of an ipsilateral retino-preoptic tract. After carefully counting the number of grains over left and right preoptic nucleus, it appeared that over the ventral and median parts of the left preoptic nucleus more grains occur than over the identical areas of the right one.It is a pleasure to acknowledge Prof. Dr. J. C. van de Kamer and Dr. F. C. G. van de Veerdonk for their helpful encouragement and constructive suggestions, Dr. L. Boomgaart for checking and amending the English writing. Thanks are also due to Miss Ans de Groot and Miss Thera Verstappen for their technical assistance and to the staff of the photographic department for making the illustrations.  相似文献   

19.
Morphological, autoradiographic, and biochemical methods were used to study the time of appearance, distribution, and nature of sulfated constituents in the developing rat optic nerve. Electron microscope studies showed that myelination begins (6 days postnatal) shortly after the appearance of oligodendroglia (5 days postnatal). Over the ensuing 3 wk, myelination increased rapidly. During the 1st postnatal wk, mucopolysaccharides and glycoproteins were labeled with 35S and autoradiographs showed grains over arachnoidal cells, astroglia, and the glia limitans. These results indicated that astroglia synthesize sulfated mucopolysaccharides of the glia limitans. After the onset of myelination, however, the major portion of [35S]sulfate was incorporated into sulfatide. Autoradiographs showed a shift of radioactive grains from astroglia and arachnoidal cells to myelin, indicating that actively myelinating oligodendroglia incorporate [35S]sulfate into myelin sulfatide; there was a concomitant increase in the activity of cerebroside sulfotransferase. In addition, the increasing amounts of proteolipid protein and myelin basic protein corresponded with the morphological appearance of myelin. These results point to a strict correlation between the structural and biochemical changes occurring during myelination. This system provides a useful model for studies designed to evaluate the effects of various perturbations on the process of myelination.  相似文献   

20.
Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of protein synthesis represents one mechanism used to control the different requirements for myelin sheath at each axo-glia interaction. Prior work has established that β1-integrins are involved in the axoglial interactions that initiate myelination. Here, we show that integrin activation regulates translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3'UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin sheath. Furthermore, knockdown of hnRNP-K inhibits MBP protein synthesis during myelination. Together, these results identify a novel pathway by which axoglial adhesion molecules coordinate MBP synthesis with myelin sheath formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号