首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The antagonistic effects of ethylene and Ag+ on the metabolism of [1-14C]indole-3-acetic acid (IAA) and on the rates of ethylene production were studied in tobacco leaf discs ( Nicotiana rustica var. Brasilia ). During the first 10 h of incubation, Ag+-pretreated leaf discs contained more free [14C]IAA than untreated ones due to decreased oxidative decarboxylation, and the discs also produced more ethylene. Exogenously supplied ethylene nullified these effects of Ag+. However, the most pronounced effect of Ag+ in increasing ethylene production, as well as the strongest antagonistic effect of exogenous ethylene, were found between 24 and 48 h of incubation. During this time span no effect on the level of free IAA and on its decarboxylation could be observed. It is suggested that ethylene exerted its autoinhibitory effect by a feedback control on the IAA-induced ethylene biosynthesis. Possible mechanisms for the autoinhibitory effect of ethylene are discussed.  相似文献   

2.
To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid.  相似文献   

3.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

4.
The production of auxins, such as indole-3-acetic acid (IAA), by rhizobacteria has been associated with plant growth promotion, especially root initiation and elongation. Six indole-producing bacteria isolated from the rhizosphere of legumes grown in Saskatchewan soils and identified as Pantoea agglomerans spp. were examined for their ability to promote the growth of canola, lentil and pea under gnotobiotic conditions and for tryptophan (Trp)-dependent IAA production. Five of the isolates enhanced root length, root weight or shoot weight by 15–37% in at least one of the plant species, but isolates 3–117 and 5–51 were most consistent in enhancing plant growth across the three species. Indole concentrations in the rhizosphere of plants grown under gnotobiotic conditions increased in the presence of the rhizosphere isolates and when Trp was added 3 days prior to plant harvest. Isolates 3–117, 5–51 and 5–105 were most effective in increasing rhizosphere indole concentrations. Colony hybridization confirmed that all of the isolates possessed the ipdC gene which codes for a key enzyme in the Trp-dependent IAA synthetic pathway. The activity of amino acid aminotransferase (AAT), catalyzing the first step in the Trp-dependent synthetic pathway, was examined in the presence of Trp and other aromatic amino acids. All of the isolates accumulated Trp internally and released different amounts of IAA. The production of IAA from the isolates was greatest in the presence of Trp, ranging from 2.78 to 16.34 μg mg protein−1 in the presence of 250 μg of Trp ml−1. The specific activity of AAT was correlated with the concentration of IAA produced in the presence of Trp but not when tyrosine (Tyr), phenylalanine (Phe) or aspartate (Asp) was used as a sole nitrogen source. Isolate 3–117, which produced significant concentrations of IAA in the presence and absence of Trp, was able to use aromatic amino acids as sole sources of nitrogen and was most consistent in enhancing the growth of canola, lentil and pea may have potential for development as a plant growth-promoting inoculant. Responsible Editor: Peter A. H. Bakker.  相似文献   

5.
Batch and fed batch cultures of Azospirillum brasilense Sp245 were conducted in a bioreactor. Growth response, IAA biosynthesis and the expression of the ipdC gene were monitored in relation to the environmental conditions (temperature, availability of a carbon source and aeration). A. brasilense can grow and produce IAA in batch cultures between 20 and 38 degrees C in a standard minimal medium (MMAB) containing 2.5 gl(-1)l-malate and 50 microgml(-1) tryptophan. IAA synthesis requires depletion of the carbon source from the growth medium in batch culture, causing growth arrest. No significant amount of IAA can be detected in a fed batch culture. Varying the concentration of tryptophan in batch experiments has an effect on both growth and IAA synthesis. Finally we confirmed that aerobic growth inhibits IAA synthesis. The obtained profile for IAA synthesis coincides with the expression of the indole-3-pyruvate decarboxylase gene (ipdC), encoding a key enzyme in the IAA biosynthesis of A. brasilense.  相似文献   

6.
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against L-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.  相似文献   

7.
8.
Two variants of plant growth-promoting strain Pseudomonas putida BS1380 harboring the naphthalene degradative plasmid pBS2 and the recombinant plasmid pNAU64 that contains the genes encoding for naphthalene dioxygenase were constructed by conjugation. The ability of this strain to produce phytohormone indole-3-acetic acid from different carbon sources was studied. Indole-3-acetic acid synthesis by these transconjugants was 15-30 times as much in contrast to a wild-type strain with glucose as the sole carbon source. No difference was observed in other carbon or nitrogen sources. It is suggested that naphthalene dioxygenase is involved in the conversion of indole-3-pyruvic acid to indole-3-acetic acid.  相似文献   

9.
The ability to synthesize Indole-3-acetic acid (IAA) is widely associated with the plant growth promoting rhizobacteria (PGPR). The present work deals with isolation and characterization of such bacteria from the rhizosphere of medicinal plant Stevia rebaudiana and optimization of IAA production from its isolates. The optimization of IAA production was carried out at different pH and temperature with varied carbon and nitrogen sources of culture media. Out of different isolates obtained, three of them were screened as efficient PGPRs on the basis of different plant growth promoting attributes. Isolates CA1001 and CA2004 showed better production of IAA at pH 9 (91.7?µg?ml?1) and at temperature 37?°C (81.7?µg?ml?1). Dextrose (1%) was found to be the best carbon source for isolate CA1001 with 104?µg?ml?1 IAA production. Isolate CA 2004 showed best production of IAA 36?µg?ml?1 and 34?µg?ml?1 at 1.5% and 1% Beef extract as nitrogen source respectively. Isolate CA 1001 showed 32?µg?ml?1 IAA production at 0.5% nicotinic acid concentration. From the current study, CA1001 and CA2004 emerged as noble alternatives for IAA production further which also resulted in root and shoot biomass generation in crop plants, hence can be further used as bio-inoculants for plant growth promotion.  相似文献   

10.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

11.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC sodium diethyldithiocarbamate - GC gas chromatography - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - MS mass spectrometry - OxIAA oxindole-3-acetic acid - PVP polyvinylpyrrolidone - TMS trimethylsilyl  相似文献   

12.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

13.
Based on the distribution constant of IAA, the efficiency of solvent partitioning has been improved by modifying the proportions of the solvents. IAA is recovered almost quantitatively by this method which also renders further sample reduction superfluous. Selective IAA recovery is supported by the distribution of immunoreactive materials on chromatograms. This modified scheme simplifies prepurification of samples for more reliable immunoassay.  相似文献   

14.
Germination of orchid seeds is a complex process. In this paper we focus on interactions between the host-plant and its bacterial partners via indole-3-acetic acid (IAA). Originally isolated from the roots of the epiphytic orchid Dendrobium moschatum, the strains of Rhizobium, Microbacterium, Sphingomonas, and Mycobacterium genera were among the most active IAA producers. Addition of exogenous tryptophan significantly enhanced auxin formation both in mineral and complex media. The presence of IAA and indole-3-acetaldehyde was confirmed by HPLC. Indole-3-pyruvic and indole-3-lactic acids were also detected in supernatants of culture filtrates of Sphingomonas sp., Rhizobium sp., and Microbacterium sp., while indole-3-acetamide was identified only in Mycobacterium sp. Some concentration- and strain-dependent effects of exogenous IAA on bacterial development were also established. Treatment of the cultures with 10 and 100 μg/ml of auxin resulted in an increase in microbial yield. None of the investigated strains was able to utilize IAA as a source of carbon and energy. Furthermore, inoculation of D. moschatum seeds with Sphingomonas sp. and Mycobacterium sp. resulted in considerable enhancement of orchid seeds germination. This growth-promoting activity was observed in the absence of any plant growth stimulators or mycorrhizal fungi, usually required for orchid germination.  相似文献   

15.
This study evaluated the effect of a yeast antagonist Cryptococcus laurentii and a plant regulator indole-3-acetic acid (IAA) on inhibition of Botrytis cinerea infection in harvested apple fruit. The results showed that the combined treatment with C. laurentii and IAA at 20 μg/ml was a more effective approach to reduce the gray mold rot in apple wounds than the C. laurentii alone. After 4 days of incubation, gray mold incidence in the combined treatment with C. laurentii and IAA was about 18%, which was a 50% reduction in incidence compared to the treatment with C. laurentii alone. Although IAA had no direct antifungal activity against B. cinerea infection when the time interval between IAA treatment and pathogen inoculation was within 2 h, application of IAA strongly reduced gray mold infection when IAA was applied 24 h prior to inoculation with B. cinerea in apple fruit wounds. Moreover, combination of IAA and C. laurentii stimulated the activities of superoxide dismutase, catalase and peroxidase with above 1.5-fold higher than that treatment with C. laurentii alone at 48 h. Therefore, combination of C. laurentii with IAA, which integrated the dual biological activity from the antagonistic yeast and plant regulator, might be developed to be a useful approach to control gray mold in harvested apple fruit.  相似文献   

16.
17.
Incubation of sections of various tissues of Pinus pinea L. with a relatively low concentration (3.6 μM) of indole-3-acetic acid-2-14C (IAA) resulted in the formation of two major metabolites. The first, which has not been identified, seemed to be a polar acidic compound and the second was identified as indole-3-acetylaspartic acid (IAAsp). The polar acidic metabolite has been found to be the major metabolite in needles, shoot wood and roots, while IAAsp has been found to be the major metabolite in shoot bark. Increasing the concentration of IAA in the incubation medium resulted in an increase in the formation of a third metabolite which proved to be l-O-(indole-3-acetyl)-β-d -glucose (IAGlu) and a concomitant decrease in the amount of the polar acidic metabolite. This phenomenon was prominent particularly in needles. IAGlu was isolated from needles and IAAsp was isolated from shoot bark by means of polyvinylpolypyrrolidone column chromatography and preparative thin-layer chromatography. IAGlu was identified by comparison with authentic material by co-chromatography in three different solvent systems and by 1H-nuclear magnetic resonance analysis. IAAsp was identified by comparison with authentic material by gas-liquid chromatography and 1H-nuclear magnetic resonance analysis. Several aspects of formation, separation and isolation of IAA metabolites are discussed.  相似文献   

18.
Metabolites of carbofuran, a carbamate insecticide, inhibit the enzymic oxidation of indole-3-acetic acid. The metabolites differ in stability and effectiveness. 2,2-Dimethyl-7-hydroxy-2,3-dihydrobenzofuran represents one type which is broken down in the IAA oxidation reaction; thus the induced inhibition is limited by depletion of the the inhibitor. 2,2-Dimethyl-3-keto-7-hydroxy-2,3-dihydrobenzofuran represents the other type which is stable in the reaction; thus the inhibition is persistent. With both types of inhibitors the inhibition is reversible by higher substrate concentrations, but the Lineweaver-Burk plot is curvilinear suggesting the complex nature of competitive inhibition.  相似文献   

19.
Summary Different concentrations of indole-3-acetic acid (IAA) in lanolin were applied to the cambial region of approximately 10- and 34-year-old internodes in the main stem of Pinus sylvestris (L.) trees during the tracheid production period. After 5 weeks of treatment, the radial width of xylem produced in both ages of internode was positively related to exogenous IAA concentration measured at 0, 1 and 3 cm directly below the application site. Tracheid production in response to exogenous IAA in the 34-year-old internode was approximately one-half of that in the 10-year-old internode. The endogenous IAA level in the 7-, 17- and approximately 34-year-old internodes of similar trees was measured by radioimmunoassay, using gas chromatography-selected ion monitoring-mass spectrometry for validation. No consistent relationship was found between xylem radial width and IAA concentration. The data indicate that the cambium's ability to respond to exogenous IAA is qualitatively the same in 1-year-old shoots and older internodes. However, as the internode ages, there is a decrease in the extent of the response and in the optimal IAA level for inducing tracheid production.  相似文献   

20.
This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号