首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of purines to xanthine by Methanococcus vannielii   总被引:3,自引:0,他引:3  
Based on the finding that Methanococcus vannielii can employ any of several purines as the sole nitrogen source, an investigation was undertaken to elucidate the pathways of purine metabolism in this organism. Cell-free extracts of M. vannielii converted guanine, uric acid, and hypoxanthine to xanthine and also formed guanine from guanine nucleotides or guanosine. The conversions of guanine and uric acid to xanthine appear to occur by pathways similar to those described in clostridia. The conversion of hypoxanthine to xanthine, however, is different than that described for Clostridium cylindrosporum and C. acidiurici, but is similar to that of C. purinolyticum, and apparently involves the direct oxidation of hypoxanthine to xanthine.  相似文献   

2.
Studies of biosynthetic pathways with purines as substrates showed that Methanococcus vannielii was capable of degrading xanthine to an extent that several of the carbon atoms were converted to CO2. Experiments to determine whether this catabolic activity could satisfy the entire nitrogen requirement for growth of M. vannielii showed that urate, guanine, xanthine, or hypoxanthine, but not adenine, could serve as the sole nitrogen source. The pyrimidines uracil and thymine, but not cytosine, were also degraded to serve as a source of nitrogen. Although urate was extensively degraded, it did not replace formate as the sole carbon source for growth of M. vannielii under the conditions imposed.  相似文献   

3.
Methanococcus vannielii is a strictly anaerobic motile coccus that possesses a tuft of flagellae. The cells are markedly sensitive to mechanical stress and are readily lysed by detergents, but the organism grows normally in media of low ionic strength. The absence of a typical cell wall, further suggested by resistance of M. vannielii to penicillin, cycloserine, and vancomycin, was confirmed by ultrastructural studies. Electron micrographs showed that the cell envelope lacks a peptidoglycan layer. On the outer surface there is a regular array of subunits similar to those of the glycoprotein envelopes of the halobacteria. However, the M. vannielii cell envelope, unlike those of the holobacteria, is unable to maintain a definite shape, and a high salt concentration is not required for its integrity.  相似文献   

4.
Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non‐permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine‐containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long‐term survival of Leishmania in a purine‐scarce environment.  相似文献   

5.
1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine-xanthine-guanine phosphoribosyltransferase produced by this organism.  相似文献   

6.
Low molecular weight acid phosphatase (orthophosphoric monoester phosphophydrolase (acid optimum), EC 3.1.3.2) from bovine brain is activated up to 4-fold by guanosine, guanine, adenine, adenosine, and 6-ethylmercapto-purine. Several pyrimidines and other purines were tested and did not show any activation effect. The rate enhancement induced by purines is uncompetitive and not caused by transphosphorylation to the activator. Using transphosphorylation to glycerol as a probe, it is proposed that the activator binds to one of the phosphorylated intermediates in the reaction pathway. These findings are discussed in terms of the catalytic mechanism of low molecular weight acid phosphatase.  相似文献   

7.
Three enzymes catalysing the synthesis of four intermediates (phosphoribosylglycinamide, phosphoribosylaminoimidazole-succinocarboxamide, phosphoribosylaminoimidazole-carboxamide and AMP) in the purine biosynthetic pathway were detected in extracts of Mycobacterium microti and M. avium, even when the organisms had been grown in mice. However only one of the three enzymes, adenylosuccinate AMP-lyase (catalysing the synthesis of the last two of the four intermediates listed above) was detected in M. leprae. Phosphoribosyltransferases, which convert adenine, guanine and hypoxanthine to the corresponding nucleoside monophosphates, and adenosine kinase were the major enzymes for purine scavenging in all mycobacteria studied. In contrast to enzymes in the synthetic pathway, evidence for metabolic regulation of the purine-scavenging enzymes was obtained. In particular, 20-80-fold differences in the activities of guanine phosphoribosyltransferase and adenosine kinase were observed when M. microti was grown in media with or without purines, or in mice. In M. leprae, activities of all phosphoribosyltransferases were low in comparison with activities in M. microti and M. avium (specific activity less than 2% when comparisons were made between extracts of host-grown mycobacteria). However, activity of adenosine kinase was higher in host-grown M. leprae than in host-grown M. microti or M. avium.  相似文献   

8.
The N-terminal sequence of HPLC-purified protein L23 from the Methanococcus vannielii ribosome has been determined by automated liquid-phase Edman degradation. Using the N-terminal amino acid sequence, an oligonucleotide probe complementary to the 5'-end of the gene was synthesized. The 26-mer oligonucleotide, containing two inosines, was used for hybridization with digested M. vannielii chromosomal DNA. The hybridizing band from HpaII-digested genomic DNA was ligated into pUC18 to yield plasmid pMvaZ1 containing the entire gene of protein L23. The nucleotide sequence complemented the partial amino acid sequence, and the gene codes for a protein of 9824 Da. The amino acid sequence of protein L23 form M. vannielii was compared to that of ribosomal proteins from other archaebacteria as well as from eubacteria and eukaryotes. The number of identical amino acids is highest when the M. vannielii protein is compared to the homologous protein from yeast and lowest vs that from tobacco chloroplasts. Interestingly, the secondary structures of the proteins as predicted by computer programs are more conserved than the primary structures.  相似文献   

9.
Adenine, guanine, and hypoxanthine were rapidly incorporated into the acid-soluble nucleotide pool and nucleic acids by wild type Novikoff cells. Incorporation followed normal Michaelis-Menten kinetics, but the following evidence indicates that specific transport processes precede the phosphoribosyltransferase reactions and are the rate-limiting step in purine incorporation by whole cells. Cells of an azaguanine-resistant subline of Novikoff cells which lacked hypoxanthine-guanine phosphoribosyltransferase activity and failed to incorporate guanine or hypoxanthine into the nucleotide pool, exhibited uptake of guanine and hypoxanthine by a saturable process. Similarly, wild type cells which had been preincubated in a glucose-free basal medium containing KCN and iodoacetate transported guanine and hypoxanthine normally, although a conversion of these purines to nucleotides did not occur in these cells. The mutant and KCN-iodoacetate treated wild type cells also exhibited countertransport of guanine and hypoxanthine when preloaded with various purines, uracil, and pyrimidine nucleosides. The cells also possess a saturable transport system for uracil although they lack phosphoribosyltransferase activity for uracil. In the absence of phosphoribosylation, none of the substrates was accumulated against a concentration gradient. Thus transport is by facilitated diffusion (nonconcentrative transport). Furthermore, the apparent Km values for purine uptake by untreated wild type and azaguanine-resistant cells were higher and the apparent Vmax values were lower than those for the corresponding phosphoribosyltransferases...  相似文献   

10.
A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0.03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0.03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12.09 for adenine at 262mmu, and 10.77 for guanine at 248mmu, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0.011; this corresponds to a standard deviation in guanine+cytosine content of 0.2% guanine+cytosine.  相似文献   

11.
12.
The uptake of adenine, guanine, guanosine and inosine by stored red cells was investigated in whole blood and red cell resuspensions at initial concentrations of 0.25, 0.5 and 0.75 mM for adenine and 0.5 mM for the other additives using a rapid ion-exchange chromatographic microanalysis of purines and nucleosides in plasma and whole blood. Increasing adenine concentrations from 0.25 to 0.75 mM in blood elevated the adenine uptake from 0.3 up to 0.8 mmol/l red cells during 2 hours after collecting blood. The intra-/extracellular distribution ratio changed from 1 : 1.3 to 1: 1.7. Some 2 hours after withdrawing blood into CPD--solution with purines and nucleosides the uptake of adenine and guanine resulted in 40 per cent and 70 per cent respectively and of guanosine and inosine in 80 and 90 per cent respectively. The replacement of plasma by a resuspending solution gave the same uptake rates for purines and nucleosides. The nucleosides were rapidly split to purines and R-1-P and disappeared from blood during one week. Adenine and guanine were utilized to 80 to 90 per cent only after 3 weeks. During the same period the utilization of guanine was smaller by 40 per cent than that of adenine due to the different activity of the purine nucleoside phosphorylase for these substrates. The plasma of all analyzed blood samples contained hypoxanthine and inosine, but guanine and guanosine were detected only in those samples to which one of them was added. After 3 weeks of storage the highest concentration of hypoxanthine was found in CPD-AI blood with 600 microM in plasma and the highest concentration of synthesized inosine in CPD-AG blood with a concentration of 100 microM in plasma. Three ways of utilization of purines by stored red cells were discussed : the synthesis of nucleotide monophosphates, the formation of nucleosides, and the deamination. The portions of these ways change during storage. The most effective concentrations of adenine and guanosine in stored blood seems to be 0.25 and 0.5 mM respectively. The full utilization of the nucleoside requires the addition of inorganic phosphate.  相似文献   

13.
SYNOPSIS. Plasmodium lophurae cannot carry out extensive de novo purine biosynthesis, and depends upon the host erythrocyte for a supply of preformed purines. Exogenous purines taken up by the parasitized erythrocyte may constitute a major source of preformed purines for parasite nucleotide biosynthesis. The uptake of exogenous radioactive purine compounds and their incorporation into nucleic acids by duck erythrocytes parasitized with P. lophurae, uninfected erythrocytes, and erythrocyte-free parasites were studied. P. lophurae was found to have a remarkable ability, both intracellularly and extracellularly, to take up and utilize certain exogenous purines such as adenosine, inosine, and hypoxanthine. Incorporation studies indicated that this species has a functional purine salvage pathway by which inosine, hypoxanthine, and adenosine can be converted to both adenine and guanine nucleotides.  相似文献   

14.
The purification from cultured human fibroblasts of a protein that binds specifically to partially depurinated DNA and inserts purines into those sites is described. The purine insertion, but not the binding, requires K+. The DNA binding can be saturated with increasing apurinic sites and is weakened by the presence of adenine or guanine. Base insertion into depurinated DNA is specific for adenine or guanine; none is observed with dATP or dGTP. When the depurinated DNA substrate is specifically cleaved with apurinic endonuclease, no purine insertion occurs. Guanine insertion does not occur into tRNA or depyrimidinated DNA, and thymine is not inserted into either depyrimidinated DNA or depurinated DNA. Purine insertion activity follows Michaelis-Menten kinetics with respect to purintes; the apparent Km values for both adenine and guanine are 5 microM. The enzyme binds the purine bases very tightly. Adenine binding saturates at less than 1 microM adenine, perhaps reflecting the low intracellular adenine concentration. The binding protein specific for UV-irradiated DNA (Feldberg, R.S., and Grossman, L. (1976) Biochemistry 15, 2402-2408) had no detectable purine or pyrimidine base insertion activity with depurinated or depyrimidinated DNAs.  相似文献   

15.
Carbon monoxide dehydrogenase was purified to homogeneity from Methanococcus vannielii grown with formate as the sole carbon source. The enzyme is composed of subunits with molecular weights of 89,000 and 21,000 in an alpha 2 beta 2 oligomeric structure. The native molecular weight of carbon monoxide dehydrogenase, determined by gel electrophoresis, is 220,000. The enzyme from M. vannielii contains 2 g-atoms of nickel per mol of enzyme. Except for its relatively high pH optimum of 10.5 and its slightly greater net positive charge, the enzyme from M. vannielii closely resembles carbon monoxide dehydrogenase isolated previously from acetate-grown Methanosarcina barkeri. Carbon monoxide dehydrogenase from M. vannielii constitutes 0.2% of the soluble protein of the cell. By comparison the enzyme comprises 5% of the soluble protein in acetate-grown cells of M. barkeri and approximately 1% in methanol-grown cells.  相似文献   

16.
The primary structure of ribosomal protein L12 from Methanococcus vannielii has been determined by direct amino acid sequence analysis with automated liquid phase Edman degradation of the entire protein and manual 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate sequencing of fragments obtained by enzymatic digestion and by partial acid hydrolysis. The knowledge of the amino acid sequences of these various fragments allowed the synthesis of two oligonucleotide probes complementary to the 5'- and the 3'-end of the gene, and they were used for hybridization with digested M. vannielii chromosomal DNA. Both oligonucleotide probes gave similar and clear hybridization signals. The plasmid pMvaX1 containing the entire gene of protein L12 was obtained. The nucleotide sequence complemented the partial amino acid sequence, and it is in full agreement with the protein sequence and the amino acid analysis. Comparison of secondary structural elements and hydrophobicity plots of the M. vannielii protein L12 with the known L12 sequences derived from other archaebacterial and eukaryotic sources show strong homologies among these sequences. They contain an exceptional highly conserved hydrophilic sequence area in the C-terminal part of the proteins. In comparison with eubacterial L12 proteins, the conservation is reduced to single amino acid residues. However, the eubacterial L12 proteins have hydrophilic regions similar to those of L12 from M. vannielii. These regions are predicted to be located at the surface of the proteins, as has been proven to be the case in crystallized Escherichia coli L12 protein. It is possible that the strongly conserved hydrophilic sequence regions form part of the factor-binding domain.  相似文献   

17.
O P Lamba  R Becka  G J Thomas 《Biopolymers》1990,29(10-11):1465-1477
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Urate oxidase (EC 1.7.3.3) of Chlamydomonas reinhardii cells grown on purines and purine derivatives has been partially characterized. Crude enzyme preparations have a pH optimum of 9.0, require O2 for activity, have an apparent Km of 12 μ M for urate, and are inhibited by high concentrations of this substrate. Enzyme activity was particularly sensitive to metal ion chelating agents like cyanide, cupferron, diethyldithiocarbamate and o -phenanthroline, and to structural analogues of urate like hypoxanthine and xanthine. Chlamydomonas cells grow phototrophically on adenine, guanine, hypoxanthine, xanthine, urate, allantoin or allantoate as sole nitrogen source, indicating that in this alga the standard pathway of aerobic degradation of purines of higher plants, animals and many microorganisms operates. As deduced from experiments in vivo , urate oxidase from Chlamydomonas is repressed in the presence of ammonia or nitrate.  相似文献   

19.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

20.
Cape buffalo serum contains xanthine oxidase which generates trypanocidal H2O2 during the catabolism of hypoxanthine and xanthine. The present studies show that xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was also elicited by purine nucleotides, nucleosides, and bases even though xanthine oxidase did not catabolize those purines. The paradox was explained in part, by the presence in serum of purine nucleoside phosphorylase and adenosine deaminase, that, together with xanthine oxidase, catabolized adenosine, inosine, hypoxanthine, and xanthine to uric acid yielding trypanocidal H2O2. In addition, purine catabolism by trypanosomes provided substrates for serum xanthine oxidase and was implicated in the triggering of xanthine oxidase-dependent trypanocidal activity by purines that were not directly catabolized to uric acid in Cape buffalo serum, namely guanosine, guanine, adenine monophosphate, guanosine diphosphate, adenosine 3′:5-cyclic monophosphate, and 1-methylinosine. The concentrations of guanosine and guanine that elicited xanthine oxidase-dependent trypanocidal activity were 30–270-fold lower than those of other purines requiring trypanosome-processing which suggests differential processing by the parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号