首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A single cellular protein of Mr approximately 18,000 and pI near 5.1, recently identified as eukaryotic translation initiation factor eIF-4D, contains the unusual amino acid hypusine [N epsilon-(4-amino--2-hydroxybutyl)lysine] formed post-translationally from lysine with a structural contribution from the polyamine spermidine. When the 3H-labeled hypusine-containing protein isolated from Chinese hamster ovary (CHO) cells that were grown with radioactive polyamine is digested with trypsin and the digest is subjected to two-dimensional separation, a single radioactive peptide is seen. A labeled peptide that occupies this same position is found in a digest of the [3H]hypusine protein from human lymphocytes and the single hypusine-containing tryptic peptide from purified rabbit reticulocyte eIF-4D also moves to this identical position. Stepwise Edman degradation of the tryptic digest of CHO cell hypusine-protein releases the radioactivity as a single peak in accordance with our earlier evidence for a single hypusine residue per molecule of eIF-4D. The similar patterns of radioactive peptides obtained from tryptic digests of radioiodinated eIF-4D from CHO cells, human lymphocytes, and rabbit reticulocytes suggest a highly conserved primary structure for this protein.  相似文献   

2.
Isoprenylated Proteins in Myelin   总被引:1,自引:0,他引:1  
Abstract: Incubation of rat brainstem slices with [3H]- mevalonate ([3H]MVA) in the presence of lovastatin resulted in the incorporation of label into three groups of myelin-associated proteins with molecular masses of 47, 21–27, and 8 kDa, as revealed on sodium dodecyl sulfate- polyacrylamide rod gel electrophoresis. Although the gel patterns of [3H]MVA-derived prenylated proteins were similar, the relative level of 3H incorporated into each protein species differed between myelin and the brainstem homogenate. Immunoprecipitation studies identified the 47-kDa prenylated protein as a 2′-3′-cyclic nucleotide phospho- diesterase, whereas the 8-kDa protein proved to be the γ subunit of membrane-associated guanine nucleotide regulatory protein. The 3H-labeled 21–27-kDa group in myelin corresponds to the molecular mass of the extensive Ras- like family of monomeric GTP-binding proteins known to be prenylated in other tissues. Increase in lovastatin concentration resulted in reduced levels of [3H]MVA-labeled species in myelin and concomitantly increased levels in the cytosol. A cold MVA chase restored to normality the appearance of [3H]MVA-labeled proteins in myelin. Furthermore, a high lovastatin concentration in the brainstem slice incubation mixture altered the appearance of newly synthesized nonprenylated myelin proteins, including proteolipid protein and the 17-kDa subspecies of myelin basic protein. Because other myelin proteins were unaffected by the high lovastatin concentration, restricting the availability of MVA in myelin-forming cells may selectively alter processes required for myelinogenesis. Although the molecular basis for the” different MVA requirements in myelin- forming cells remains undefined, it may involve an alteration in the biological activity of certain proteins that require prenylation to be functionally active, and that are responsible for promoting insertion of specific proteins into the myelin membrane.  相似文献   

3.
Embryonic Drosophila cells (Kc cells) and [5-3H]mevalonate (less than or equal to 10 microM) were used to determine the absolute basal in vivo rate of total mevalonic acid synthesis/utilization. An absolute in vivo mevalonic acid synthesis rate of 0.69 nmol/h/mg total cell protein was measured. Absolute mevalonate utilization was obtained by correcting for the extent of endogenous dilution of exogenous [3H]mevalonate at isotopic equilibrium. Cellular [3H]farnesol specific radioactivity was used as representative of a rapidly turning over isopentenoid pool. Although our previous Kc cell study (Havel, C. M., Rector, E. R. II, Watson, J. A., 1986, J. Biol. Chem. 261, 10,150-10,156) demonstrated that greater than or equal to 40% of the metabolized [3H]mevalonate appeared as 3H-labeled media water, this report established that t,t-3,7,11-[3H]trimethyl-2,6,10-dodecatriene-1,12 dioic acid was also secreted. Media accumulation of the C15-alpha,omega-prenyl dioic acid and 3H2O was related directly to [3H]mevalonic acid availability. This is the first mevalonate carbon balance study reported for a eukaryotic organism. It was concluded that (i) Kc cells synthesized more mevalonate than needed for normal growth and essential isopentenoids and (ii) excess mevalonate carbon accumulated intra- and extracellularly as isopentenoid compounds distal to C5 products. Finally, this study emphasized the need to measure total mevalonate utilization and not mevalonate conversion to a single isopentenoid end product in carbon balance investigations.  相似文献   

4.
To study phosphorylation of D. melanogaster nuclear lamins in vivo, we used Kc tissue culture cells. Kc cells contain products of both lamin genes, the lamin Dm0 gene encoding constitutive polypeptides expressed in almost all cell types and the developmentally regulated lamin C gene. We grew Kc cells in low phosphate medium and labelled them with (32P(H3PO4. To obtain mitotic cells we used vinblastine to arrest cells in metaphase. Cells were collected, washed, lysed and resultant extracts fractionated in the presence of protein phosphatase inhibitors. D. melanogaster proteins were then denatured by boiling in SDS plus DTT, followed by immunoaffinity chromatography and SDS-PAGE purification. As anticipated, we found that a CNBr fragment derived from the N-terminal part of lamin Dm0-derivatives (amino acid residues 2-158; fragment A) was phosphorylated during both interphase and mitosis. Interphase but not mitotic phosphorylation was found on an internal CNBr fragment (derived from the end of the central rod domain and the first part of the C-terminal lamin tail; amino acid residues 385-548; fragment D). Interphase only phosphorylation was also detected on another CNBr fragment derived from the extreme C-terminal portion of lamin Dm0-derivatives (amino acid residues 549-622; fragment E). To supplement these data, we used 2-D tryptic peptide mapping followed by phosphorImager analysis. We routinely detected at least seven 'spots' derived from interphase lamins but only a single mitotic lamin phosphopeptide.  相似文献   

5.
Embryonic Drosophila cells (Kc cells) were used to further characterize sterol-independent modulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. 3-Methyl-3-5-dihydroxyvalerate (mevalonate), 3-fluoromethyl-3,5-dihydroxyvalerate (fluoromevalonate), and 3-ethyl-3,5-dihydroxyvalerate (homomevalonate) were tested as modulators. Although mevalonate caused a rapid, reversible suppression of reductase activity, fluoro- and homomevalonate increased activity; fluoromevalonate was more effective than homomevalonate. Mevalonate, added simultaneously with fluoromevalonate, blocked the analogue's effect on Kc cell reductase activity. However, mevalonate did not suppress an established fluoromevalonate increase in HMG-CoA reductase activity. Fluoromevalonate blocked [1-14C, 5-3H]mevalonate conversion to 14CO2- and 3H-labeled lipids and [3H] mevalonate 5-pyrophosphate accumulated. Neither protein nor RNA synthesis were required for mevalonate-mediated suppression of reductase activity. However, fluoromevalonate's effect on reductase activity required protein synthesis. Furthermore, in the absence of protein synthesis, fluoromevalonate-stabilized Kc cell HMG-CoA reductase activity. We have concluded that mevalonate, fluoromevalonate, homomevalonate, and compactin (mevinolin) modulated HMG-CoA reductase activity because they altered isoprenoid carbon flow to a post-isopentenyl 1-pyrophosphate regulatory, signal molecule.  相似文献   

6.
1. A group of 21 to 24-kDa proteins of pheochromocytoma (PC-12) cells was found in blot overlay assays to bind specifically [alpha-32P]GTP. Binding was inhibited by GTP analogues but not by ATP. Such small GTP-binding proteins were found in the cytosolic and in the particulate fraction of the cells, but they were unevenly distributed: about 75% of the small GTP-binding proteins were localized within the particulate fraction of the cells. Separation of these proteins by two-dimensional gel electrophoresis revealed the existence of seven distinct [alpha-32P]GTP-binding proteins. 2. Targeting of the small GTP-binding proteins to the particulate fraction of PC-12 cells requires modification by isoprenoids, since depleting the cells of the isoprenoid precursor mevalonic acid (MVA) by the use of lovastatin resulted in a 50% decrease in membrane-bound small GTP-binding proteins, with a proportionate increase in the cytosolic form. This blocking effect of lovastatin was reversed by exogenously added MVA. 3. In addition, metabolic labeling of PC-12 cells with [3H]MVA revealed incorporation of [3H]MVA metabolites into the cluster of 21 to 24-kDa proteins in a form typical of isoprenoids; the label was not removed from the proteins by hydroxylamine, and labeling was enhanced in cells incubated with lovastatin. The latter effect reflects a decrease in the isotopic dilution of the exogenously added [3H]MVA, as the addition of exogenous MVA reversed the effect of lovastatin on [3H]MVA-metabolite incorporation into the 21 to 24-kDa proteins. 4. Additional experiments demonstrated that isoprenylation is required not only for membrane association of small GTP-binding proteins, but also for their further modification by a methylation enzyme. This was evident in experiments in which the cells were metabolically labeled with [methyl-3H]methionine, a methylation precursor. The group of 21 to 24-kDa proteins was labeled with a methyl-3H group in a form typical of C-terminal-cysteinyl carboxylmethyl esters. Their methylation was blocked by the methylation inhibitors methylthioadenosine (MTA), 3-deazadenosine and homocysteine thiolactone as well as by lovastatin. MVA reversed the lovastatin block of methylation. 5. Two-dimensional gel analysis of the [3H]methylated proteins detected seven methylated small GTP-binding proteins that correspond to the isoprenylated proteins. Levels of the small GTP-binding proteins as well as isoprenylation and methylation were reduced by cycloheximide. 6. Distribution of the methylated proteins between particulate and cytosolic fractions was found to be similar to that of the small GTP-binding proteins (i.e., a 4:1 ratio).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Unique glycosylation of three keratan sulfate proteoglycan isoforms   总被引:3,自引:0,他引:3  
Recent work demonstrates isoforms of bovine corneal keratan sulfate proteoglycan containing structurally unique core proteins of 25 and 37 kDa (Funderburgh, J., and Conrad, G. (1990) J. Biol. Chem. 265, 8297-8303). In the current study, two forms (37A and 37B) of the 37-kDa protein were separated by ion-exchange chromatography after removal of keratan sulfate with endo-beta-galactosidase. Keratan sulfate linkage sites in core proteins were labeled with UDP-[3H]galactose using galactosyltransferase. Labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by tryptic digestion and reversed-phase chromatography. The 37A protein has three keratan sulfate-linkage sites, and the 37B and 25-kDa proteins each contain one linkage site. Reversed-phase tryptic maps of the three proteins differed in total peptide profile and in glycosylated peptides labeled with periodate-[3H]-NaBH4. Tryptic mapping of the two 37-kDa isoforms after deglycosylation showed differences in total tryptic peptides, in peptides labeled with [14C]iodoacetic acid, and in peptides recognized by antibodies to a mixture of the 37-kDa cores. Antibody to a synthetic peptide with N-terminal sequence obtained from mixed 37-kDa cores reacted exclusively with the 37B isoform. These results show that bovine corneal keratan sulfate proteoglycan has three different core proteins each with distinct glycosylation and unique primary structure.  相似文献   

8.
A C Smith  J M Harmon 《Biochemistry》1987,26(2):646-652
The structural organization of the steroid-binding protein of the IM-9 cell glucocorticoid receptor was investigated by using one- and two-dimensional gel electrophoresis of proteolytic receptor fragments. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of receptor fragments isolated after trypsin digestion of immunopurified [3H]dexamethasone 21-mesylate ([3H]DM-) labeled receptor revealed the presence of a stable 26.5-kilodalton (kDa) steroid-containing, non-DNA-binding fragment, derived from a larger, less stable, 29-kDa fragment. The 26.5-kDa tryptic fragment appeared to be completely contained within a 41-kDa, steroid-containing, DNA-binding species isolated after chymotrypsin digestion of the intact protein. Two-dimensional electrophoretic analysis of the [3H]DM-labeled tryptic fragments resolved two (pI congruent to 5.7 and 7.0) 26.5-kDa and two (pI congruent equal to 5.7 and 6.8) 29-kDa components. This was the same number of isoforms seen in the intact protein, indicating that the charge heterogeneity of the steroid-binding protein is the result of modification within the steroid-containing, non-DNA-binding, 26.5-kDa tryptic fragment. Two-dimensional analysis of the 41-kDa [3H]DM-labeled chymotryptic species revealed a pattern of isoforms more complex than that seen either in the intact protein or in the steroid-containing tryptic fragments. These results suggest that the 41-kDa [3H]DM-labeled species resolved by one-dimensional SDS-PAGE after chymotrypsin digestion may be composed of several distinct proteolytic fragments.  相似文献   

9.
The inactivation of the bovine heart mitochondrial F1-ATPase with 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of [3H]aniline at pH 7.0 led to the covalent incorporation of 3H into the enzyme. When the ATPase was inactivated by 94% with 0.9 mM EEDQ in the presence of 3.6 mM [3H]aniline in a large-scale experiment in which the protein concentration was 21 mg/ml, 4.2 mol [3H]anilide were formed per mol enzyme, of which 0.35 mol was incorporated per mol of the alpha subunit and 1.0 mol was incorporated per mol of the beta subunit. Examination of a tryptic digest of the isolated alpha subunit revealed that the majority of the 3H was contained in a single tryptic peptide, which, when purified, was shown to contain the [3H]anilide of a glutamic acid residue which corresponds to alpha-Glu-402 of the Escherichia coli F1-ATPase. This residue was labeled to the extent of about 1.0 mol/mol enzyme. Analysis of tryptic peptides purified from the isolated beta subunit showed that 0.8 and 1.5 mol, respectively, of the [3H]anilides of beta-Glu-341 and beta-Glu-199 were formed per mol MF1 during the inactivation of the enzyme at 21 mg/ml. When the ATPase was inactivated by 90% at a protein concentration of 1.7 mg/ml by 0.9 mM EEDQ in the presence of 1.7 mM [3H]aniline, 3.1 mol [3H]anilide were formed per mol enzyme. From the analysis of the radioactive peptides purified from a tryptic digest of the labeled ATPase from this experiment it was estimated that 0.7 mol of the [3H]anilide of alpha-Glu-402, 0.3 mol of the [3H]anilide of beta-Glu-341, and 1.5 mol of the [3H]anilide of beta-Glu-199 were formed per mol F1-ATPase. Since beta-Glu-199 is labeled to the same extent in the two experiments while alpha-Glu-402 and beta-Glu-341 were not, suggests that the modification of beta-Glu-199 is responsible for inactivation of the enzyme by EEDQ.  相似文献   

10.
3'(2')-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP) was used as a photoaffinity label of the ATP binding site of unphosphorylated chicken gizzard myosin. Specific photolabeling of the active site of 6 S myosin was assured by forming a stable myosin.Co(II)Bz2ADP.orthovanadate complex (termed trapping) prior to irradiation. Co2+ was used in place of Mg2+ to prevent the known photoreaction of vanadate with myosin which destabilizes the trapped complex. [3H] Bz2ADP.Pi was also stably trapped on gizzard myosin by forming the 10 S folded conformation of the protein in the presence of [3H]Bz2ATP and Mg2+. Irradiation of 6 S myosin containing orthovanadate trapped [3H] Bz2ADP or 10 S trapped [3H]Bz2ADP.Pi gave 32 and 30% covalent incorporation, respectively. The 50-kDa and precursor 68-kDa tryptic peptides of the subfragment-1 heavy chain derived from both forms of myosin were found to contain essentially all of the covalently attached [3H]Bz2ADP. Parallel experiments with untrapped [3H]Bz2ADP showed extensive nonspecific labeling of all of the major tryptic peptides and the light chains. Eight labeled peptides, isolated from 6 and 10 S photolabeled myosin, contained the sequence G319-H-V-P-I-X-A-Q326, where X corresponds to labeled proline 324. [14C]Bz2ADP was previously shown to label serine 324 in skeletal subfragment-1 (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995), which corresponds to alanine 325 in the gizzard sequence. Thus, this region of the 50-kDa tryptic fragment, near the nucleotide binding site, in both skeletal and smooth muscle myosins, must fold in essentially the same manner.  相似文献   

11.
Human lamin B contains a farnesylated cysteine residue   总被引:36,自引:0,他引:36  
We recently showed that HeLa cell lamin B is modified by a mevalonic acid derivative. Here we identified the modified amino acid, determined its mode of linkage to the mevalonic acid derivative, and established the derivative's structure. A cysteine residue is modified because experiments with lamin B that had been biosynthetically labeled with [3H]mevalonic acid or [35S]cysteine and then extensively digested with proteases yielded 3H- or 35S-labeled products that co-chromatographed in five successive systems. A thioether linkage rather than a thioester linkage is involved because the mevalonic acid derivative could be released from the 3H-labeled products in a pentane-extractable form by treatment with Raney nickel but not with methanolic KOH. The derivative is a farnesyl moiety because the Raney nickel-released material was identified as 2,6,10-trimethyl-2,6,10-dodecatriene by a combination of gas chromatography and mass spectrometry. The thioether-modified cysteine residue appears to be located near the carboxyl end of lamin B because treatment of 3H-labeled lamin B with cyanogen bromide yielded a single labeled polypeptide that mapped toward this end of the cDNA-inferred sequence of human lamin B.  相似文献   

12.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

13.
We have examined the nuclear localization of isoprenylated proteins in CHO-K1 cells labeled with [14C]mevalonate. Nuclear proteins of 68, 70, and 74 kD, posttranslationally modified by an isoprenoid, are also components of a nuclear matrix-intermediate filament preparation from CHO cells. Furthermore, the 68-, 70-, and 74-kD isoprenylated polypeptides are immunoprecipitated from cell extracts with two different anti-lamin antisera. Based on exact two-dimensional comigration with lamin B, both from rat liver lamin and CHO nuclear matrix-intermediate filament preparations, and its immunoprecipitation with anti-lamin antisera, we conclude that the 68-kD isoprenylated protein found in nuclei from [14C]mevalonate-labeled CHO cells is lamin B. The more basic 74-kD isoprenylated nuclear protein is similar in molecular mass and isoelectric pH variants to the lamin A precursor polypeptide reported by others. Starving cells for mevalonate results in a dramatic accumulation of a polypeptide that comigrates on two-dimensional, non-equilibrium pH gradient electrophoresis (NEPHGE) gels with the 74-kD isoprenylated protein. The 70-kD isoprenylated protein, which is resolved on NEPHGE gels as being higher in molecular mass and slightly more basic than lamin B, has not yet been identified.  相似文献   

14.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

15.
We investigated the biochemical characteristics of the 51-kDa protein that is a major mitotic apparatus-associated basic protein of sea urchin eggs (Toriyama, M., Ohta, K., Endo, S., and Sakai, H. (1988) Cell Motil. Cytoskeleton 9, 117-128). The amino acid composition of the 51-kDa protein was apparently different from those of tubulin, actin, histones, and myelin basic protein; yet it was similar to those of polypeptide elongation factors 1 alpha (EF-1 alpha). In addition, antibody to EF-1 alpha from yeast cross-reacted with the 51-kDa protein. [3H] GTP binding activity was detected in the phosphocellulose-purified fraction (PC fraction) which predominantly contained the 51-kDa protein and was shown to be specific to GTP, GDP, guanylyl imidodiphosphate, and ITP. Photo-affinity labeling using [alpha-32P]8-azidoguanosine triphosphate (8-azido-GTP) demonstrated that a 51-kDa polypeptide in the PC fraction specifically bound 8-azido-GTP. This GTP-binding polypeptide was bound to a GTP affinity column, could be eluted by the addition of GTP, and was immunoreactive with anti-51-kDa protein antibodies. When the PC fraction was applied to a gel filtration chromatography column, GTP binding activity was completely coeluted with the 51-kDa protein. Furthermore, the PC fraction and the gel filtration-purified fraction had EF-1 alpha activity: [14C]Phe-tRNA transferring activity to ribosomes in the presence of poly(U) and ribosome-dependent GTPase activity. The results indicate that the mitotic apparatus-associated 51-kDa protein is a GTP-binding protein and suggest that it is structurally and functionally related to yeast EF-1 alpha.  相似文献   

16.
In Escherichia coli, peptide cross bridges in the murein undergo turnover after they are synthesized. Peptide cross bridges formed in the presence of [3H]diaminopimelic acid were found to lose 3H label from their donor peptides after the [3H]diaminopimelic acid was removed from the growth medium. There was a corresponding increase in the amount of 3H label in acceptor peptides so that the total amount of label in the peptide cross bridges remained constant. Our explanation of this observation is that the cross bridges are cleaved by the cell, and the original 3H-labeled donor peptides are incorporated into new cross bridges. Since these 3H-labeled peptides are now only tetrapeptides, they can only be used as acceptors when new cross bridges are formed.  相似文献   

17.
The stable [3H]prostaglandin E1 (PGE1)-bound receptor, which couples to 60 kDa GTP-binding protein, from membranes of mouse mastocytoma P-815 cells has been purified and characterized. When the membranes were preincubated with [3H]PGE1 for 60 min at 37 degrees C, the dissociation of the ligand from the receptor was remarkably decreased, even in the presence of GTP gamma S. The stable [3H]PGE1-bound receptor complex was solubilized with 6% digitonin. The solubilized [3H]PGE1 receptor was eluted with [35S]GTP gamma S bindings activity from an Ultrogel AcA44 column. The fractions containing activities of both [3H]PGE1 and [35S]GTP gamma S bindings were further purified by column chromatographies on wheat germ agglutinin (WGA)-agarose and phenyl-Sepharose CL-4B. The partially purified [3H]PGE1-bound receptor was affinity-labeled with [14C]5'-p-fluorosulfonylbenzoylguanosine and a protein with a molecular mass of 60 kDa was detected. These results suggest that the ligand-bound PGE1 receptor of P-815 cells associates with a novel GTP-binding protein with a molecular mass of 60 kDa.  相似文献   

18.
The metabolic fate of 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether) upon interaction with primary cultured adult rat hepatocytes was investigated. [3H]PAF-acether was transformed time-dependently into [3H]lyso-PAF-acether, 1-O-[3H]alkylglycerol and finally converted to 3H-labeled fatty aldehyde. 1-O-[3H]Alkyl-2-acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC) was formed after a long incubation time and with a smaller amount compared with that formed in platelets and neutrophils. When lipids from cells, cell surfaces and incubation medium were analyzed separately, most of the transformed products of [3H]PAF-acether remained in the cells. When 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine was incubated with hepatocytes, it was mainly converted into 1-O-[3H]alkylglycerol. 3H-labeled fatty aldehyde and [3H]alkylacyl-GPC were also found. Hepatocytes metabolized slowly from 1-O-[1-14C]hexadecylglycerol to 3H-labeled fatty aldehyde and 3H-labeled phospholipid. These findings suggest that cultured hepatocytes mainly catabolize exogeneous PAF-acether by removing the acetyl residue and the polar head group and, finally, by cleaving an ether bond. The deacetylation-reacylation step, which is important in platelets and neutrophils, was not shown to be a main metabolic pathway of PAF-acether in cultured hepatocytes.  相似文献   

19.
The amino acid sequence of 72 chymotryptic peptides isolated from 14C-, 3H-labeled carboxymethyl-beta-galactosidase has been determined. A variety of techniques were used in the isolation procedures including separation by solubility, size, and ion exchange and paper chromatography. These peptides contain approximatley 500 amino acids, range in size from 2 to 26 residues, and give overlaps with tryptic peptides of 16 to 55 residues. Peptides from this digest and those reported earlier from tryptic digests account together for the sequence of about 600 of the 1021 residues in the subunit.  相似文献   

20.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号