首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Induced-fit effects are well known in the binding of small molecules to proteins and other macromolecular targets. Among other targets, protein kinases are particularly flexible proteins, so that such effects should be considered in attempts at structure-based inhibitor design for kinase targets. This paper outlines some recent progress in methods for including target flexibility in computational studies of molecular recognition. A focus is the "relaxed complex method," in which ligands are docked to an ensemble of conformations of the target, and the best complexes are re-scored to provide predictions of optimal binding geometries. Early applications of this method have suggested a new approach to the development of inhibitors of HIV-1 Integrase.  相似文献   

2.
3.
Microtubules (MT), along with a variety of associated motor proteins, are involved in a range of cellular functions including vesicle movement, chromosome segregation, and cell motility. MTs are assemblies of heterodimeric proteins, alpha beta-tubulins, the structure of which has been determined by electron crystallography of zinc-induced, pacilitaxel-stabilized tubulin sheets. These data provide a basis for examining relationships between structural features and protein function. Here, we study the fluctuation dynamics of the tubulin dimer with the aim of elucidating its functional motions relevant to substrate binding, polymerization/depolymerization and MT assembly. A coarse-grained model, harmonically constrained according to the crystal structure, is used to explore the global dynamics of the dimer. Our results identify six regions of collective motion, comprised of structurally close but discontinuous sequence fragments, observed only in the dimeric form, dimerization being a prerequisite for domain identification. Boundaries between regions of collective motions appear to act as linkages, found primarily within secondary-structure elements that lack sequence conservation, but are located at minima in the fluctuation curve, at positions of hydrophobic residues. Residue fluctuations within these domains identify the most mobile regions as loops involved in recognition of the adjacent regions. The least mobile regions are associated with nucleotide binding sites where lethal mutations occur. The functional coupling of motions between and within regions identifies three global motions: torsional and wobbling movements, en bloc, between the alpha- and beta-tubulin monomers, and stretching longitudinally. Further analysis finds the antitumor drug pacilitaxel (TaxotereR) to reduce flexibility in the M loop of the beta-tubulin monomer; an effect that may contribute to tightening lateral interactions between protofilaments assembled into MTs. Our analysis provides insights into relationships between intramolecular tubulin movements of MT organization and function.  相似文献   

4.
Tropomyosin, a coiled coil protein that binds along the length of actin filaments, contains 40 uninterrupted heptapeptide repeats characteristic of coiled coils. Yet, it is flexible. Regions of tropomyosin that may be important for binding to the filament and for interacting with troponin deviate from canonical coiled coil structure in subtle ways, altering the local conformation or energetics without interrupting the coiled coil. In a region rich in interface alanines (an Ala cluster), the chains pack closer than in canonical coiled coils, and are staggered, resulting in a bend [Brown et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8496-8501]. Brown et al. suggested that bends at alanine clusters allow tropomyosin to wind on the actin filament helix. Another explanation is that local destabilization of the coiled coil, rather than close packing of the chains at Ala clusters per se, allows flexibility. Changing three Ala residues to canonical interface residues, A74L-A78V-A81L, greatly stabilized tropomyosin, measured using circular dichroism and differential scanning calorimetry, and reduced actin affinity >10-fold. Normal actin affinity and stability were restored in a mutant A74Q-A78N-A81Q that mimicked the stability of the Ala cluster but not the close packing of the chains. Analysis and modeling of comparable mutations introduced closer to the N-terminus show that the effects on stability and function depend on context. Models based on tropomyosin crystal structures give insight into possible effects of the mutations on the structure. We conclude that the significance of the Ala clusters in allowing flexibility of tropomyosin is stability-driven.  相似文献   

5.
In proteins, all amino acid residues are susceptible to oxidation by various reactive oxygen species (ROS), with methionine and cysteine residues being particularly sensitive to oxidation. Methionine oxidation is known to lead to destabilization and inactivation of proteins, and oxidatively modified proteins can accumulate during aging, oxidative stress, and in various age-related diseases. Although the efficiency of a given methionine oxidation can depend on its solvent accessibility (evaluated from a protein structure as the accessible surface area of the corresponding methionine residue), many experimental results on oxidation rate and oxidation sites cannot be unequivocally explained by the methionine solvent accessible surface area alone. In order to explore other possible mechanisms, we analyzed a set of seventy-one oxidized methionines contained in thirty-one proteins by various bioinformatics tools. In which, 41% of the methionines are exposed, 15% are buried but with various degree of flexibility, and the rest 44% are buried and structured. Buried but highly flexible methionines can be oxidized. Buried and less flexible methionines can acquire additional local structural flexibility from flanking regions to facilitate the oxidation. Oxidation of buried and structured methionine can also be promoted by the oxidation of neighboring methionine that is more exposed and/or flexible. Our data are consistent with the hypothesis that protein structural flexibility represents another important factor favoring the oxidation process.  相似文献   

6.
Two new methods for the quantification and visualization of the flexibility of molecular surfaces are presented. Both methods rely on results of molecular dynamics (MD) simulations. Whereas method I is based on a simple but fast grid-counting algorithm, method II uses a mapping function that allows for a sharp and clear visualization of atomic RMS fluctuations on a molecular surface. To demonstrate the scope of the methods, MD simulations of two proteins, PTI and ubiquitin, were performed. The flexibility data are mapped onto the molecular surfaces of the proteins and visualized using texture mapping technology available on modern workstations.  相似文献   

7.
The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or “basket”. Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a shoulder in the scattering function at intermediate q values (0.016 Å−1), just beyond the Guinier regime. This feature can be accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron micrographs.  相似文献   

8.
Proteins rely on flexibility to respond to environmental changes, ligand binding and chemical modifications. Potentially, a perturbation that changes the flexibility of a protein may interfere with its function. Millions of mutations have been performed on thousands of proteins in quests for a delineation of the molecular details of their function. Several of these mutations interfered with the binding of a specific ligand with a concomitant effect on the stability of the protein scaffold. It has been ambiguous and not straightforward to recognize if any relationships exist between the stability of a protein and the affinity for its ligand. In this review, we present examples of proteins where changes in stability results in changes in affinity and of proteins where stability and affinity are uncorrelated. We discuss the possibility for a relationship between stability and binding. From the data presented is it clear that there are specific sites (flexibility hotspots) in proteins that are important for both binding and stability. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   

9.
Advances in protein structure determination, led by the structural genomics initiatives have increased the proportion of novel folds deposited in the Protein Data Bank. However, these structures are often not accompanied by functional annotations with experimental confirmation. In this review, we reassess the meaning of structural novelty and examine its relevance to the complexity of the structure-function paradigm. Recent advances in the prediction of protein function from structure are discussed, as well as new sequence-based methods for partitioning large, diverse superfamilies into biologically meaningful clusters. Obtaining structural data for these functionally coherent groups of proteins will allow us to better understand the relationship between structure and function.  相似文献   

10.
Proteins are held together in the native state by hydrophobic interactions, hydrogen bonds and interactions with the surrounding water, whose strength as well as spatial and temporal distribution affects protein flexibility and hence function. We study these effects using 10 ns molecular dynamics simulations of pure water and of two proteins, the glutamate receptor ligand binding domain and barnase. We find that most of the noncovalent interactions flicker on and off over typically nanoseconds, and so we can obtain good statistics from the molecular dynamics simulations. Based on this information, a topological network of rigid bonds corresponding to a protein structure with covalent and noncovalent bonds is constructed, with account being taken of the influence of the flickering hydrogen bonds. We define the duty cycle for the noncovalent interactions as the percentage of time a given interaction is present, which we use as an input to investigate flexibility/rigidity patterns, in the algorithm FIRST which constructs and analyses topological networks.  相似文献   

11.
Rapid computational mining of large 3D molecular databases is central to generating new drug leads. Accurate virtual screening of large 3D molecular databases requires consideration of the conformational flexibility of the ligand molecules. Ligand flexibility can be included without prohibitively increasing the search time by docking ensembles of precomputed conformers from a conformationally expanded database. A pharmacophore-based docking method whereby conformers of the same or different molecules are overlaid by their largest 3D pharmacophore and simultaneously docked by partial matches to that pharmacophore is presented. The method is implemented in DOCK 4.0.  相似文献   

12.
Molecular imaging is a rapidly emerging field, providing noninvasive visual quantitative representations of fundamental biological processes in intact living subjects. Fundamental biomedical research stands to benefit considerably from advances in molecular imaging, with improved molecular target selection, probe development and imaging instrumentation. The noninvasiveness of molecular imaging technologies will also provide benefit through improved patient care. Molecular imaging endpoints can be quantified, and therefore are particularly useful for translational research. Integration of the two disciplines of molecular imaging and molecular medicine, combined with systems-biology approaches to understanding disease complexity, promises to provide predictive, preventative and personalized medicine that will transform healthcare.  相似文献   

13.
Evidence for flexibility in the function of ribonuclease A   总被引:2,自引:0,他引:2  
Cole R  Loria JP 《Biochemistry》2002,41(19):6072-6081
The dynamic properties of the enzyme ribonuclease A (RNase A) were investigated through the use of solution NMR spin relaxation experiments. As determined by "model-free" analysis, RNase A is conformationally rigid on time scales faster than overall rotational tumbling (picoseconds to nanoseconds). The average order parameter, S(2), for RNase A is 0.910 +/- 0.051. However, 28 of the amino acid residues in RNase A were identified as undergoing chemical exchange on the microsecond to millisecond time scale. For 16 of these residues the microscopic chemical exchange rates, k(ex), were quantitated through the use of the relaxation-compensated CPMG (rcCPMG) experiment. The value of k(ex) was identical for all residues with an average of 1640 s(-1) and is similar to the RNase A k(cat) value of 1900 s(-1). Many of these mobile residues localize to the active site in RNase A and include the catalytically crucial amino acids His119 and Asp121. Additional motion is found in the B1, B2, and P0 subsites, suggesting a coupling of motion between the binding and catalytic sites. The activation energy of the observed millisecond motion was measured by applying the rcCPMG experiment at temperatures of 283, 293, and 298 K and was determined to vary between 3.6 and 7.4 kcal/mol. The measured barrier to conformational motion is similar to the activation barrier for the RNase A catalyzed reaction and thus would not be thermodynamically limiting to catalysis. These studies suggest a correlation of conformational exchange kinetics and thermodynamics derived from NMR measurements with those determined by biochemical means and are suggestive of an important role for flexibility in enzyme function.  相似文献   

14.
Genes in Development is a collection of 13 stimulating essays on "post genomic" approaches to the concept of the gene. At the risk of caricaturing some complex balances, the contributors tend to be skeptical about genetic determinism, the central dogma of molecular biology, reductionism, genes as programs and the concept of the gene as a DNA sequence. They tend to like emergent properties, complexity theory, the parity thesis for developmental resources, developmental systems theory, and membranes. But within this broad weltanschauung the essays in Genes in Development vary widely in their interests and emphases––from the history of twentieth century genetics to the social and ethical issues raised by contemporary genetics––which makes for an attractive and valuable collection.  相似文献   

15.
16.
17.
Phycoerythrocyanin is the only cyanobacterial phycobiliprotein containing phycoviolobilin as a chromophore. The phycoviolobilin chromophore is photo-reactive; upon irradiation, the chromophore undergoes a Z/E-isomerization involving the rotation of pyrrole-ring D. We have determined the structure of trimeric phycoerythrocyanin at three different experimental settings: monochromatically at 110 K and 295 K as well as with the Laue method at 288 K. Based on their chemical structures, the restraints for the phycoviolobilin of the alpha-subunit and for the phycocyanobilin chromophores of the beta-subunit were newly generated, which allows a chemically meaningful refinement of both chromophores. All three phycoerythrocyanin structures are very similar; the subunits match within 0.5 A. The detailed comparison of the data obtained with the different measurements provided information about the protein properties around the phycoviolobilin chromophore. For the first time, crystals of a phycobilisome protein are used successfully with the Laue technique. This paves the way for time-resolved macromolecular crystallography, which is able to elucidate the exact mechanisms of the phycoviolobilin photoactivity including the protein involvement.  相似文献   

18.
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.  相似文献   

19.
20.
The stress hormone cortisol is assumed to influence cognitive functions. While cortisol-induced alterations of declarative memory in particular are well-investigated, considerably less is known about its influence on executive functions. Moreover, most research has been focused on slow effects, and rapid non-genomic effects have not been studied. The present study sought to investigate the impact of acute cortisol administration as well as basal cortisol levels on cognitive flexibility, a core executive function, within the non-genomic time frame. Thirty-eight healthy male participants were randomly assigned to intravenously receive either cortisol or a placebo before performing a task switching paradigm with happy and angry faces as stimuli. Cortisol levels were measured at six points during the experiment. Additionally, before the experiment, basal cortisol measures for the cortisol awakening response were collected on three consecutive weekdays immediately following awakening and 30, 45, and 60 min after. First and foremost, results showed a pronounced impact of acute and basal cortisol on reaction time switch costs, particularly for angry faces. In the placebo group, low basal cortisol was associated with minimal switch costs, whereas high basal cortisol was related to maximal switch costs. In contrast, after cortisol injection, basal cortisol levels showed no impact. These results show that cognitive flexibility-enhancing effects of acute cortisol administration are only seen in men with high basal cortisol levels. This result supports the context dependency of cortisol administration and shows the relevance of taking basal cortisol levels into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号