首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anionic (pI 4.6) isoenzyme of glutathione transferase was purified to homogeneity from human thyroid by affinity chromatography followed by isoelectric focusing. The content of enzyme was calculated to constitute about 0.2% of soluble proteins. The enzyme is formed by two identical subunits of 23,000 daltons approximately. The thyroid transferase did not catalyze the reduction of peroxides. Physical, catalytic and immunological analyses demonstrated extensive similarities between the thyroid transferase and the transferase from placenta, erythrocytes and breast. On the other hand, the thyroid transferase appears catalytically different from transferase 7-7, even if both cross-react with the antibodies raised against human placenta transferase.  相似文献   

2.
Overproduction of human terminal transferase protein has now been accomplished by cloning the coding sequence of human terminal transferase into a baculovirus, where the expression of terminal transferase is under the control of the polyhedrin protein promoter. Two constructs were made, one producing a protein containing the entire terminal transferase fused to 12 amino acids from the NH2 terminus of the polyhedrin protein, and the other producing 58-kDa human terminal transferase. The terminal transferase levels expressed in cells infected with either recombinant baculovirus are around 10,000 units/10(7) cells at 48 h postinfection, about 200-fold greater than levels expressed in thymus and cultured lymphoblastoid cells. The chimeric polyhedrin/human terminal transferase protein produced in the infected insect cells has a molecular weight of about 60,000 while the nonfused recombinant human terminal transferase is identical in molecular weight to that present in human lymphoblastoid cells. Both forms of recombinant terminal transferase show immunological and enzymatic activity. When infected cells are pulse-labeled with [35S] methionine at 42-45 h postinfection, about 10% of newly synthesized protein is terminal transferase. Both forms of terminal transferase are phosphorylated in recombinant virus-infected cells as demonstrated by pulse-labeling infected cells with 32P-inorganic phosphate and isolation of labeled terminal transferase peptides by immunoprecipitation.  相似文献   

3.
One of the major forms of glutathione S-transferase (designated as Ft transferase) has been identified and purified to near homogeneity from mouse testis. The purification was achieved by ammonium sulfate fractionation, DEAE cellulose chromatography, hydroxylapatite chromatography and the preparative isoelectric focusing. Purified Ft transferase has an isoelectric point of 4.9 ± 0.3 and was shown to be a homodimer with a native molecular weight of about 50 000.Immunologically, antisera to Ft transferase do not crossreact with F2 or F3 transferase. However, a weak cross reactivity was observed between the antisera to F3 transferase and Ft transferase. Biochemical properties of purified Ft transferase are similar to those transferases isolated from mouse liver. Tissue distributions of the multiple forms of glutathione S-transferase were examined by column isoelectric focusing of various mouse tissue homogenates. It was found that mouse Ft transferase is present only in testis as a major form and in brain as a minor form, but not in other tissues that were examined.  相似文献   

4.
Terminal deoxynucleotidyltransferase has been purified from lymphoblasts of leukemic patients. The enzyme has a molecular weight of approximately 62,000 as determined by gel filtration and nondenaturing gel electrophoresis and is not dissociated into subunits by sodium dodecyl sulfate. In contrast, the terminal transferase enzyme from calf thymus has a molecular weight of 42,000 as determined by gel filtration, and is dissociated into 2 subunits of Mr 30,000 and 8,000 by sodium dodecyl sulfate. The enzyme has an isoelectric point of 8.2 and kinetic characteristics which are similar to those of calf thymus terminal transferase. The apparent Km for purine nucleotide polymerization at saturating initiator concentration with Mg2+ is 0.2 mM and with Mn2+ is 0.05 mM. Like calf terminal transferase, the reaction velocity is higher in the presence of Mg2+ than Mn2+. ATP inhibits the reaction catalyzed by terminal transferase isolated from human lymphoblasts due to mutual recognition of ATP and dATP by a common site on the enzyme. Preliminary experiments indicate that human terminal transferase may contain a small amount of carbohydrate. This report represents the first purification to near homogeneity of terminal transferase from a tissue source other than calf thymus.  相似文献   

5.
GSSG selectively elutes two GSH transferases from a mixture of rat GSH transferases bound to a GSH-agarose affinity matrix. One is a form of GSH transferase 1-1 and the other is shown to be GSH transferase 8-8. By using tissues that lack this form of GSH transferase 1-1 (e.g. lung), GSH transferase 8-8 may thus be purified from cytosol in a single step. Quantitative analysis of the tissue distribution of GSH transferase 8-8 was obtained by h.p.l.c.  相似文献   

6.
7.
The activity of purified bovine thymus terminal deoxynucleotidyl transferase was markedly inhibited when the enzyme was incubated in a poly(ADP-ribose)-synthesizing system containing purified bovine thymus poly(ADP-ribose) polymerase, NAD+, Mg2+ and DNA. All of these four components were indispensable for the inhibition. The inhibitors of poly(ADP-ribose) polymerase counteracted the observed inhibition of the transferase. Under a Mg2+-depleted and acceptor-dependent ADP-ribosylating reaction condition [Tanaka, Y., Hashida, T., Yoshihara, H. and Yoshihara, K. (1979) J. Biol. Chem. 254, 12433-12438], the addition of terminal transferase to the reaction mixture stimulated the enzyme reaction in a dose-dependent manner, suggesting that the transferase is functioning as an acceptor for ADP-ribose. Electrophoretic analyses of the reaction products clearly indicated that the transferase molecule itself was oligo (ADP-ribosyl)ated. When the product was further incubated in the Mg2+-fortified reaction mixture, the activity of terminal transferase markedly decreased with increase in the apparent molecular size of the enzyme, indicating that an extensive elongation of poly(ADP-ribose) bound to the transferase is essential for the observed inhibition. Free poly(ADP-ribose) and the polymer bound to poly(ADP-ribose) polymerase were ineffective on the activity of the transferase. All of these results indicate that the observed inhibition of terminal transferase is caused by the poly(ADP-ribosyl)ation of the transferase itself.  相似文献   

8.
Phosphorylation of terminal deoxynucleotidyl transferase within leukemic cells has been demonstrated, using 32P labelling of intact cells in culture, followed by immunoprecipitation of the cellular extracts using an anti-terminal transferase antiserum. The phosphate linkage was found to involve serine and threonine residues. Purified calf thymus terminal transferase served as a substrate for cyclic AMP independent protein kinase obtained from leukemic cells. Phosphorylation in vitro of terminal transferase was accompanied by increased activity and decreased inhibition by excess ribo-ATP. These results indicate that terminal transferase is a physiologic cyclic AMP independent protein kinase substrate, and that this reaction may be important in its control.  相似文献   

9.
The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.  相似文献   

10.
Under standard assay conditions, with 1-chloro-2,4-dinitrobenzene (CDNB) as electrophilic substrate, rat glutathione transferase 4-4 is strongly inhibited (I50 = 1 microM) by indomethacin. No other glutathione transferase investigated is significantly inhibited by micromolar concentrations of indomethacin. Paradoxically, the strong inhibition of glutathione transferase 4-4 was dependent on high (millimolar) concentrations of CDNB; at low concentrations of this substrate or with other substrates the effect of indomethacin on the enzyme was similar to the moderate inhibition noted for other glutathione transferases. In general, the inhibition of glutathione transferases can be explained by a random-order sequential mechanism, in which indomethacin acts as a competitive inhibitor with respect to the electrophilic substrate. In the specific case of glutathione transferase 4-4 with CDNB as substrate, indomethacin binds to enzyme-CDNB and enzyme-CDNB-GSH complexes with an even greater affinity than to the corresponding complexes lacking CDNB. Under presumed physiological conditions with low concentrations of electrophilic substrates, indomethacin is not specific for glutathione transferase 4-4 and may inhibit all forms of glutathione transferase.  相似文献   

11.
The acetyl CoA:butyrate CoA transferase catalyzes the translocation of butyrate in membrane vesicles prepared from a strain of Escherichia coli which is depressed for the acetoacetate degradation operon. Butyrate accumulated in the membranes as butyryl CoA. The role of the transferase in uptake is supported by the following observations: (i) uptake is stimulated by acetyl CoA; (ii) the solubilized CoA transferase and uptake exhibit KmS for butyrate, pH optima and levels inhibition by N-ethylmaleimide that are virtually identical; (iii) significant amounts of the CoA transferase are found associated with the membranes and uptake is rapidly inhibited by butyryl CoA and acetate, the products of the CoA transferase-catalyzed reaction. The fact that butyrate uptake did not exhibit saturation kinetics with increasing concentrations of acetyl CoA suggested that the transferase is not localized on the outer surface of the membrane. The level of free butyrate in the vesicles, the fact that butyrate uptake exhibited saturation kinetics with increasing concentrations of butyrate, and the observation that radioactivity was not rapidly lost from the vesicles following addition of butyryl CoA or acetate to incubation mixtures indicated that butyrate is translocated rather than trapped by the CoA transferase.  相似文献   

12.
Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.  相似文献   

13.
Molecular biology of terminal transferase   总被引:7,自引:0,他引:7  
Terminal transferase is an unusual deoxynucleotide polymerizing enzyme found only in prelymphocytes. The protein was purified to homogeneity from calf thymus glands in 1971 as a 32 kDa protein with a two peptide structure. Subsequent biochemical and immunological analyses of terminal transferase protein in crude extracts from a number of animal species showed a single peptide with a molecular weight of about 58,000. The two peptide structure found earlier was caused by proteolysis. Homogeneous 58 kDa terminal transferase has now been produced from human lymphoblastoid cells and calf thymus glands by immunoaffinity chromatography. In vitro phosphorylation studies showed that the terminal transferase protein contains one phosphorylation site near one end of the polypeptide chain, and the phosphorylation of the enzyme has been confirmed by in vivo labeling experiments. Unambiguous demonstration of the molecular weight of the human terminal transferase was obtained by translation of the cloned human terminal transferase DNA sequence to a 58,308 Da protein. The translated amino acid sequence also provided a possible phosphorylation site near the amino-terminus of the protein. Preliminary analysis of the genomic structure shows a simple intron/exon pattern with the total human terminal transferase gene spanning at least 65 Kb.  相似文献   

14.
Rab proteins are membrane-bound prenylated GTP-binding proteins required for the targeted movement of membrane vesicles from one organelle to another. In the current paper we have characterized and purified an enzyme that attaches geranylgeranyl residues to Rab proteins that bear the COOH-terminal sequence Cys-X-Cys (such as Rab3A) and Cys-Cys (such as Rab1A). This enzyme is designated Rab geranylgeranyl transferase (Rab GG transferase). At high salt concentrations, Rab GG transferase from rat brain cytosol separates into two components, designated A and B, both of which are required for activity. We purified Component B to apparent homogeneity and found that it contains two peptides of 60 and 38 kDa. The purified Rab GG transferase did not attach geranylgeranyl to p21H-ras-CVLL, which is prenylated by a GG transferase of the CAAX type that resembles the CAAX farnesyltransferase. Rab GG transferase was strongly inhibited by Zn2+, a cation that is absolutely required by farnesyltransferase. The Rab GG transferase was also inhibited by NaCl concentrations in excess of 100 mM. Together with previous data, the current findings indicate that mammalian cells possess at least three protein prenyltransferases (CAAX farnesyltransferase, CAAX GG transferase, and Rab GG transferase) that are specific for different classes of low molecular weight GTP-binding proteins and other proteins.  相似文献   

15.
Sequential appearance of the galactose enzymes in E. coli   总被引:7,自引:0,他引:7  
Summary Upon induction, the three galactose enzymes appear in the order epimerase, transferase, kinase. Introduction of an amber mutation into the transferase gene seems to shorten the time interval between addition of inducer and the appearance of kinase. The time of appearance of epimerase is not influenced by amber mutations in the transferase gene.  相似文献   

16.
1. A simple colorimetric assay for UDP-glucuronosyltransferase activities towards phenolic substrates, using Folin & Ciocalteu's phenol reagent, is described. The assay is used to measure rat liver transferase activities towards substrates from a series of 4-alkyl-substituted phenols. 2. Activities towards phenol, 4-methylphenol and 4-ethylphenol develop near-adult values before birth, are precociously stimulated by dexa methasone in utero and are stimulated 3--4-fold by 3-methylcholanthrene in adult liver. These are assigned to a "late-foetal" group of transferase activities. 3. Activities towards 4-n-propylphenol, 4-s-butylphenol and 4-t-butylphenol are negligible in late-foetal liver, developing to near-adult values in the first 4 postnatal days, and are not affected by dexamethasone or 3-methylcholanthrene. They are assigned to a "neonatal" group of transferase activities. 4. Although 4-ethylphenol and 4-n-propylphenol differ only by a single --CH2-- moiety, this is sufficient to change the acceptability of these substrates respectively from the late-foetal to the neonatal group of transferase activities. The change is distinct, with no overlapping of substrate acceptability between the two groups of transferase activities. 5. From consideration of the above and other substrates, the two groups of transferase activities do not distinguish substrates on the basis of their molecular weights or lipophilicity. The distinguishing feature appears to be the specific molecular configurations of the substrates.  相似文献   

17.
Yeast tRNA nucleotidyl transferase rapidly inactivates (half life c. 2 hr) upon nitrogen starvation of exponentially growing cells. The inactivation does not occur when glucose together with the nitrogen source is removed or when glucose is replaced by ethanol. The transferase activity reappears shortly after replenishment of the nitrogen source and this appearance of the enzymatic activity is blocked by cycloheximide, indicating the need for protein biosynthesis during the process. The nucleotidyl transferase activity is also very low in stationary phase yeast cells. A ten fold decrease in the transferase activity is not paralleled by loss of the integrity of the 3' end of the tRNA chains. It seems that there is a large excess of enzymatic activity over that needed to keep the tRNA chains complete. The observed lack of the 3' end of tRNAs from late stationary phase yeast cannot be accounted for by the observed drop in transferase activity in these cells.  相似文献   

18.
A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase from porcine submaxillary glands was purified to electrophoretic homogeneity. IgG prepared from antisera against the pure enzyme immunoprecipitated the transferase in Triton X-100 extracts of submaxillary glands. The submaxillary transferase is a membrane-bound enzyme in contrast to the pure bovine colostrum enzyme, which is soluble in the absence of detergents. Both transferases have similar properties but also differ significantly. Examination of the acceptor substrate specificity of the submaxillary gland transferase showed that it specifically transferred N-acetylgalactosamine from UDP-GalNAc to the hydroxyl group of threonine and was devoid of transferase activity toward serine-containing peptides. These results imply that more than one transferase is involved in forming the GalNAc-threonine and the GalNAc-serine linkages found in O-linked oligosaccharides in glycoproteins. The amino acid sequence adjacent to glycosylated threonine residues may influence the rate of glycosylation by the pure transferase. For example, the second threonine residue in the sequence, Thr-Thr, appears to be glycosylated about twice as fast as the first and more rapidly than single, isolated threonine residues. However, no unique consensus sequence for glycosylation of threonine residues is evident, and any accessible threonine residue appears to be a potential acceptor substrate.  相似文献   

19.
Injection of perfluorodecaline to rats caused an increase of the phase II xenobiotic biotransformation enzyme activities followed by cytochrome P-450 induction. The activities of liver microsomal UDP-glucuronosyl transferase and glutathione transferase increased by 130 and 40%, respectively, against the control level. The increase of the cytosolic glutathione transferase activity was insignificant In contrast, the activity of sulfotransferase decreased about 2-fold. The role of modification of xenobiotic biotransformation enzymes in the biological effect of perfluorodecaline is discussed.  相似文献   

20.
BACKGROUND: Farnesyl protein transferase inhibitors have emerged as promising novel agents for combating cancerous disease. Nevertheless, the importance for farnesyl protein transferase enzymatic activity for cellular physiology of untransformed cells remains poorly investigated. MATERIALS AND METHODS: Peripheral blood monocytes, isolated from the blood of eight healthy volunteers, were treated with a farnesyl protein transferase inhibitor (FTI 744,832) or vehicle control for 16 hr. Subsequently cells were challenged with different concentrations of lipopolysaccharide (LPS), colony stimulating factor-1 (CSF-1), or phorbol esters for 10 min, after which the activation state of p42/p44 MAP kinase, p38 MAP kinase, and Jun-N-terminal kinase was investigated using Western blotting and phosphospecific antibodies. RESULTS: We observed that farnesyl protein transferase inhibition abrogated activation of p38 MAP kinase by LPS, CSF-1, and phorbol esters. Also the activation of Jun-N-terminal kinase by LPS was not seen after farnesyl protein transferase inhibition. Finally, stimulation of p42/p44 MAP kinase with CSF-1 was strongly reduced by farnesyl protein transferase inhibition, whereas activation of p42/p44 MAP kinase by phorbol ester was only slightly effected. CONCLUSIONS: Farnesyl protein transferase enzymatic activity is required for proper activation of all major members of the MAP kinase family. The observation that activation the p38 MAP kinase and Jun-N-terminal kinase is sensitive to farnesyl protein transferase inhibition raises the possibility that, in addition to cancerous disease, farnesyl protein transferase inhibitors may be useful compounds in combating inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号