首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3' terminus of tRNAs has the universally conserved bases C74C75A76 that interact with the ribosomal large subunit. In the ribosomal P site, bases C74 and C75 of tRNA, form Watson-Crick base-pairs with G2252 and G2251, respectively, present in the conserved P-loop of 23 S rRNA. Previous studies have suggested that the G2252-C74 base-pair is important for peptide bond formation. Using a pure population of mutant ribosomes, we analyzed the precise role of this base-pair in peptide bond formation, elongation factor G-dependent translocation, and peptide release by release factor 1. Surprisingly, our results show that the G2252-C74 base-pair is not essential for peptide bond formation with intact aminoacyl tRNAs as substrates and for EF-G catalyzed translocation. Interestingly, however, peptide release was reduced substantially when base-pair formation between G2252 and C74 of P site tRNA was disrupted, indicating that this conserved base-pair plays an important role in ester bond hydrolysis during translation termination.  相似文献   

2.
The major function of the ribosome is its ability to catalyze formation of peptide bonds, and it is carried out by the ribosomal peptidyltransferase. Recent evidence suggests that the catalyst of peptide bond formation is the 23S rRNA of the large ribosomal subunit. We have developed an in vitro system for the determination of peptidyltransferase activity in yeast ribosomes. Using this system, a kinetic analysis of a model reaction for peptidyltransferase is described with Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The Ac-Phe-tRNA-poly(U)-80S ribosome complex (complex C) was isolated and then reacted with excess puromycin to give Ac-Phe-puromycin. This reaction (puromycin reaction) followed first-order kinetics. At saturating concentrations of puromycin, the first-order rate constant (k(3)) is identical to the catalytic rate constant (k(cat)) of peptidyltransferase. This k(cat) from wild-type yeast strains was equal to 2.18 min(-1) at 30 degrees C. We now present for the first time kinetic evidence that yeast ribosomes lacking a particular protein of the 60S subunit may possess significantly altered peptide bond-forming ability. The k(cat) of peptidyltransferase from mutants lacking ribosomal protein L24 was decreased 3-fold to 0.69 min(-1), whereas the k(cat) from mutants lacking L39 was slightly increased to 3.05 min(-1) and that from mutants lacking both proteins was 1.07 min(-1). These results suggest that the presence of ribosomal proteins L24 and, to a lesser extent, L39 is required for exhibition of the normal catalytic activity of the ribosome. Finally, the L24 or L39 mutants did not affect the rate or the extent of the translocation phase of protein synthesis. However, the absence of L24 caused increased resistance to cycloheximide, a translocation inhibitor. Translocation of Ac-Phe-tRNA from the A- to P-site was inhibited by 50% at 1.4 microM cycloheximide for the L24 mutant compared to 0.7 microM for the wild type.  相似文献   

3.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   

4.
5.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.  相似文献   

6.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

7.
Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site. Both functional and X-ray crystallographic data make it clear that the exclusion of β-L-amino acids as participants in protein synthesis is a consequence of the architecture of the ribosomal peptidyltransferase center (PTC). To enable the reorganization of ribosomal PTC architecture through mutagenesis of 23S rRNA, a library of modified ribosomes having modifications in two regions of the 23S rRNA (2057-2063 and 2496-2507 or 2582-2588) was prepared. A dual selection procedure was used to obtain a set of modified ribosomes able to carry out protein synthesis in the presence β-L-amino acids and to provide evidence for the utilization of such amino acids, in addition to α-L-amino acids. β-Puromycin, a putative mimetic for β-aminoacyl-tRNAs, was used to select modified ribosome variants having altered PTC architectures, thus potentially enabling incorporation of β-L-amino acids. Eight types of modified ribosomes altered within the PTC have been selected by monitoring improved sensitivity to β-puromycin in vivo. Two of the modified ribosomes, having 2057AGCGUGA2063 and 2502UGGCAG2507 or 2502AGCCAG2507, were able to suppress UAG codons in E. coli dihydrofolate reductase (DHFR) and scorpion Opisthorcanthus madagascariensis peptide IsCT mRNAs in the presence of β-alanyl-tRNA(CUA).  相似文献   

8.
9.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

10.
Previous experiments have shown that the top of helix 90 of 23S rRNA is highly important for the ribosomal peptidyltransferase activity and might be part of the donor (P) site. Developing on these studies, mutations in the 23S rRNA at the highly conserved positions G2505, G2582, and G2583 were investigated. None of the mutations affected assembly, subunit association, or the capacity of tRNA binding to A and P sites. A "selective transpeptidation assay" revealed that the mutations specifically impaired peptide bond formation. Results with a modified "fragment" assay using the minimal donor substrate pA-fMet are consistent with a model where the nucleotides psiGG2582 form a binding pocket for C75 of the tRNA.  相似文献   

11.
Oxazolidinones are potent inhibitors of bacterial protein biosynthesis. Previous studies have demonstrated that this new class of antimicrobial agent blocks translation by inhibiting initiation complex formation, while post-initiation translation by polysomes and poly(U)-dependent translation is not a target for these compounds. We found that oxazolidinones inhibit translation of natural mRNA templates but have no significant effect on poly(A)-dependent translation. Here we show that various oxazolidinones inhibit ribosomal peptidyltransferase activity in the simple reaction of 70 S ribosomes using initiator-tRNA or N-protected CCA-Phe as a P-site substrate and puromycin as an A-site substrate. Steady-state kinetic analysis shows that oxazolidinones display a competitive inhibition pattern with respect to both the P-site and A-site substrates. This is consistent with a rapid equilibrium, ordered mechanism of the peptidyltransferase reaction, wherein binding of the A-site substrate can occur only after complex formation between peptidyltransferase and the P-site substrate. We propose that oxazolidinones inhibit bacterial protein biosynthesis by interfering with the binding of initiator fMet-tRNA(i)(Met) to the ribosomal peptidyltransferase P-site, which is vacant only prior to the formation of the first peptide bond.  相似文献   

12.
The peptidyl transfer reaction catalyzed by the ribosome is a sophisticated product of evolution. The molecular mechanism of peptide bond formation has not been fully elucidated although the essential involvement of 23S rRNA has been established. The universal CCA sequence at the 3'-end of tRNA plays an important role in this process, by interacting with specific nucleotides in 23S rRNA. However, reconstitution of peptidyl transferase activity by a naked 23S rRNA (without the help of any of the ribosomal proteins) has not been reported. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation using a piece of tRNA--an aminoacyl-minihelix--mixed with sequence-specific oligonucleotides that contained puromycin. This system reproduced conceptually the equivalent interactions between the CCA trinucleotide of tRNA and 23S rRNA. Peptide bond formation was detected by gel electrophoresis, TLC and mass spectrometry. These results have implications for the evolution of the peptidyl transfer reaction in biological system.  相似文献   

13.
Modification of the Escherichia coli 50S ribosomal subunit with histidine-specific diethyl pyrocarbonate affects peptide bond formation and release-factor-dependent peptidyl-tRNA hydrolysis. Unmodified L16 can restore activity to a split protein fraction from the altered subunit but other proteins of the core also contain histidine residues important for the activity of the peptidyltransferase centre. When isolated and purified by centrifugation, particles reconstituted with unmodified proteins and modified L16 do not retain the altered L16. The modified protein does mediate the partial restoration of peptide bond formation and release-factor-2 activities to these particles. It must be exerting its effect during the assembly of the peptidyltransferase centre in the reconstituted particle. A particle could be reconstituted which lacks L16 and has significant activity in peptide bond formation and peptidyl-tRNA hydrolysis. L16 stimulates these activities. A tighter ribosomal binding of the release factor 2, dependent upon the absence of protein L11, can in part compensate for the loss of activity of the peptidyltransferase centre when it is assembled with either modified L16 or in the absence of L16. The protein and its histidine residue seem important, therefore, for the peptidyltransferase centre to be formed in the correct conformation but not essential for activity once the centre is assembled.  相似文献   

14.
15.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

16.
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.  相似文献   

17.
A C→U mutation (rdn5) in the conserved sarcin/ricin domain of yeast 25S rRNA has been shown to cause translational suppression and paromomycin resistance. It also separates the killing from the misreading effect of this antibiotic. We confirm these findings and provide in vitro evidence that rdn5 causes a 3-fold increase in translational errors and resistance to paromomycin. The role of this 25S rRNA domain in ribosome's decoding function was further demonstrated when 60S subunits from rdn5 cells were combined with 40S subunits from cells carrying an error-prone mutation in the eukaryotic accuracy center ribosomal protein S23, an homologue of Escherichia coli S12. These hybrids exhibited an error frequency similar to that of rdn5 alone, despite the error-prone mutation in S23. This was accompanied by extreme resistance to paromomycin, unlike the effects of the individual mutations. Furthermore, rdn5 lowers peptidyltransferase activity measured as a second-order rate constant (kcat/Ks) corresponding to the rate of peptide bond formation. This mutation was also found to affect translocation. Elongation factor 2 (EF2)-dependent translocation of Ac-Phe-tRNA from the A- to P-site was achieved at an EF2 concentration 3.5 times lower than in wild type. In conclusion, the sarcin/ricin domain of 25S rRNA influences decoding, peptide bond formation and translocation.  相似文献   

18.
Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450•U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G•U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G•U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (kpep) was reduced ~200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G•U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pKa important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.  相似文献   

19.
C C Hall  J E Smith  B S Cooperman 《Biochemistry》1985,24(21):5702-5711
We have developed a method for the rapid localization of sites of ribosomal RNA labeling to limited regions (approximately 200 bases). The method is based on the formation and polyacrylamide gel electrophoretic separation of hybrids between restriction fragments of rrnB DNA and isotopically labeled rRNA and the subsequent determination of radioactivity across the gel. Using [3H]adenine-labeled rRNA as a control sample, we optimized experimental conditions with respect to a number of variables, including rRNA:DNA stoichiometric ratio, temperature of the annealing step, and levels of nucleases. An important result is that different rRNA X DNA hybrid fragments are obtained in different yields. The method was then applied to analyses of C3H3-labeled rRNA, giving results in good accord with known and proposed sites of rRNA methylation, and of rRNA that has been photoaffinity-labeled with 5-azido-2-nitrobenzoyl-[3H]Phe-tRNAPhe, a probe directed toward the peptidyltransferase center. The latter study showed a single major site of RNA labeling, falling within bases 2445-2668 of 23S rRNA. The extent of labeling was shown to be dependent on light-induced formation of a reactive intermediate and to be decreased in the absence of poly(uridylic acid) or in the presence of puromycin. The location of this major site of labeling is consistent with recent results obtained with an analogous tRNA photoaffinity label [Barta, A., Steiner, G., Brosius, J., Noller, H. F., & Kuechler, E. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3607-3611] and with related genetic and biochemical studies of antibiotic interaction with ribosomes suggesting that the peptidyltransferase center falls within region V (bases 2043-2625) of 23S rRNA.  相似文献   

20.
Elongation factor-dependent affinity labeling of Escherichia coli ribosomes was obtained using a functional analogue of aminoacyl-tRNA. Since elongation factor Tu (EF-Tu) screens both the modified aminoacyl-tRNAs and the ribosomal complexes for active particles, only functional macromolecular complexes are examined. This approach also provides an unequivocal identification of the transfer RNA binding site from which affinity labeling occurs. Nε-bromoacetyl-Lys-tRNA was prepared by covalently attaching an electrophilic group to the side-chain of the amino acid. This chemical modification did not interfere with function, since the ?BrAcLys-tRNA participated successfully in EF-Tu and poly(rA)-dependent binding to ribosomes, peptide bond formation, and elongation factor G (EF-G)-mediated translocation. Affinity labeling of ribosomal RNA was observed only in those incubations which contained both EF-Tu and EF-G. The crosslinking of ?BrAcLys-tRNA to 23 S rRNA was found even if fusidic acid was added to the incubation before EF-G. The dependence of the covalent reaction on EF-G demonstrates, unambiguously, that a reactive residue of 23 S rRNA is located adjacent to the 3′ end of the functionally defined P site. Similarly, the affinity labeling of proteins L13/14/15, L2, L32/33, and L24 required EF-G-dependent translocation of ?BrAcLys-tRNA into the P site. Protein L27 was alkylated following the EF-Tu-dependent binding of ?BrAcLys-tRNA to the ribosome, and the extent of affinity labeling was stimulated by the addition of EF-G to the incubation. Double-label dipeptide experiments confirmed that affinity labeling occurred from functional tRNA binding sites by demonstrating that the same ?BrAcLys-tRNA which reacted covalently with 23 S rRNA or a ribosomal protein could also participate in peptide bond formation. Finally, the ribosome affinity labeling obtained with ?BrAcLys-tRNA · EF-Tu · guanylylimidodiphosphate differed little from that obtained with ?BrAcLys-tRNA · EF-Tu · GTP. This work constitutes the first direct examination of the aminoacyl ends of the EF-Tu-dependent conformational states of the ribosomal complex, and demonstrates the potential value of functional Lys-tRNA analogues with different probes attached to the lysine side-chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号