首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.  相似文献   

2.
Tandem-repeat C-type lectins (pattern-recognition receptors) with specificity for mannosides are intimately involved in antigen recognition, uptake, routing and presentation in macrophages and dendritic cells. In Langerhans cells, Langerin (CD207), a type-II transmembrane protein with a single C-type carbohydrate recognition domain attached to a heptad repeat in the neck region, which is likely to establish oligomers with an -coiled-coil stalk, has been implicated in endocytosis and the formation of Birbeck granules. The structure of Langerin harbours essential motifs for Ca2+-binding and sugar accommodation. Lectin activity has previously been inferred by diminished antibody binding to cells in the presence of the glycan ligand mannan. In view of the complexity of the C-type lectin/lectin-like network, it is unclear what role Langerin plays for Langerhans cells in binding mannosides. In order to reveal in frozen tissue sections to what extent mannose-binding activity co-localizes with Langerin, we have used a synthetic marker, i.e. a neoglycoprotein carrying mannose maxiclusters, as a histochemical ligand, and computer-assisted fluorescence monitoring in a double-labelling procedure. Mannoside-binding capacity was detected in normal epithelial cells. Double labelling ensured the unambiguous assessment of the binding of the neoglycoprotein in Langerhans cells. Light-microscopically, its localization profile resembled the pattern of immunohistochemical detection of Langerin. This result has implications for suggesting rigorous controls in histochemical analysis of this cell type, because binding of kit reagents, i.e. mannose-rich glycoproteins horseradish peroxidase or avidin, to Langerin (or a spatially closely associated lectin) could yield false-positive signals. To show that recognition of carbohydrate ligands in dendritic cells is not restricted to mannose clusters, we have also documented binding of carrier-immobilized histo-blood group A trisaccharide, a ligand of galectin-3, which was not affected by the presence of a blocking antibody to Langerin. Remarkably, access to the carbohydrate recognition domain of Langerin appeared to be impaired in proliferatively active environments (malignancies, hair follicles), indicating presence of an endogenous ligand with high affinity to saturate the C-type lectin under these conditions.  相似文献   

3.
The critical role of Langerhans cells (LC) in contact hypersensitivity (CHS) was recently questioned in studies using different LC-depletion mouse models. On one hand, inducible ablation of LC led to diminished ear swelling, suggesting functional redundancy between LC and (Langerin(+)) dermal dendritic cells (DC). On the other hand, constitutive or acute depletion of LC resulted in an enhanced reaction, supporting a regulatory role of LC in CHS. To address this controversy by conditional gene targeting, we generated Langerin-Cre knockin mice. Breeding these mice to a Cre-reporter strain demonstrated robust and specific DNA recombination in LC, as well as other Langerin(+) tissue DC. In agreement with the vital requirement of TGF-β signaling for LC development, crossing Langerin-Cre to mice homozygous for a loxP-flanked TGF-βR1 allele resulted in permanent LC deficiency, whereas the homeostasis of dermal Langerin(+) DC was unaffected. In the absence of LC, induction of CHS in these Langerin(+) DC-specific TGF-βR1-deficient mice elicited decreased ear swelling compared with controls. This novel approach provided further evidence against a regulatory function of LC in CHS. Moreover, these Langerin-Cre mice represent a unique and powerful tool to dissect the role and molecular control of Langerin(+) DC populations beyond LC.  相似文献   

4.
Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.  相似文献   

5.
The targeted delivery of Ags to dendritic cell (DCs) in vivo greatly improves the efficiency of Ag presentation to T cells and allows an analysis of receptor function. To evaluate the function of Langerin/CD207, a receptor expressed by subsets of DCs that frequently coexpress the DEC205/CD205 receptor, we genetically introduced OVA into the C terminus of anti-receptor Ab H chains. Taking advantage of the new L31 mAb to the extracellular domain of mouse Langerin, we find that the hybrid Ab targets appropriate DC subsets in draining lymph nodes and spleen. OVA is then presented efficiently to CD8(+) and CD4(+) T cells in vivo, which undergo 4-8 cycles of division in 3 days. Peptide MHC I and II complexes persist for days. Dose response studies indicate only modest differences between Langerin and DEC receptors in these functions. Thus, Langerin effectively mediates Ag presentation.  相似文献   

6.
Human immunodeficiency virus-1 (HIV-1) is primarily transmitted sexually. Dendritic cells (DCs) in the subepithelium transmit HIV-1 to T cells through the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN). However, the epithelial Langerhans cells (LCs) are the first DC subset to encounter HIV-1. It has generally been assumed that LCs mediate the transmission of HIV-1 to T cells through the C-type lectin Langerin, similarly to transmission by DC-SIGN on dendritic cells (DCs). Here we show that in stark contrast to DC-SIGN, Langerin prevents HIV-1 transmission by LCs. HIV-1 captured by Langerin was internalized into Birbeck granules and degraded. Langerin inhibited LC infection and this mechanism kept LCs refractory to HIV-1 transmission; inhibition of Langerin allowed LC infection and subsequent HIV-1 transmission. Notably, LCs also inhibited T-cell infection by viral clearance through Langerin. Thus Langerin is a natural barrier to HIV-1 infection, and strategies to combat infection must enhance, preserve or, at the very least, not interfere with Langerin expression and function.  相似文献   

7.
8.
Langerhans cells (LCs) serve as epidermal sentinels of the adaptive immune system. Conventional wisdom suggests that LCs encounter Ag in the skin and then migrate to the draining lymph nodes, where the Ag is presented to T cells, thus initiating an immune response. Platelet-activating factor (PAF) is a phospholipid mediator with potent biological effects. During inflammation, PAF mediates recruitment of leukocytes to inflammatory sites. We herein tested a hypothesis that PAF induces LC migration. Applying 2,4-dinitro-1-fluorobenzene (DNFB) to wild-type mice activated LC migration. In contrast, applying DNFB to PAF receptor-deficient mice or mice injected with PAF receptor antagonists failed to induce LC migration. Moreover, after FITC application the appearance of hapten-laden LCs (FITC+, CD11c+, Langerin+) in the lymph nodes of PAF receptor-deficient mice was significantly depressed compared with that found in wild-type mice. LC chimerism indicates that the PAF receptor on keratinocytes but not LCs is responsible for LC migration. Contrary to the diminution of LC migration in PAF receptor-deficient mice, we did not observe any difference in the migration of hapten-laden dermal dendritic cells (FITC+, CD11c+, Langerin-) into the lymph nodes of PAF receptor-deficient mice. Additionally, the contact hypersensitivity response generated in wild-type or PAF receptor-deficient mice was identical. Finally, dermal dendritic cells, but not LCs isolated from the draining lymph nodes after hapten application, activated T cell proliferation. These findings suggest that LC migration may not be responsible for the generation of contact hypersensitivity and that dermal dendritic cells may play a more important role.  相似文献   

9.
10.
11.
The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC.  相似文献   

12.
Langerhans cells (LC) represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFbeta. In vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFbeta. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFbeta family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFbeta. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFbeta, responsible for LC differentiation during inflammatory/autoimmune conditions.  相似文献   

13.
14.
Langerin is required for the biogenesis of Birbeck granules (BGs), the characteristic organelles of Langerhans cells. We previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of “Organized Smooth Endoplasmic Reticulum” (OSER), with distinct molecular and physiological properties. The involvement of homotypic interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain also blocked the formation of OSER. Hence, a “double-lock” mechanism governs the behavior of YFP-Langerin, where asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin molecules participate in its retention and the subsequent formation of BG-like OSER. These observations confirm that BG-like structures appear wherever Langerin accumulates and confirm that membrane trafficking effectors dictate their physiology and, illustrate the importance of molecular interactions in the architecture of intracellular membranes.  相似文献   

15.
Both the upper (endocervix and uterus) and lower (ectocervix and vagina) female genital tract mucosa are considered to be target sites for sexual transmission of HIV. There are a few reports on the T cell and antigen-presenting cell distribution in human endometrial tissue however, there is little known about the expression of the HIV co-receptor CCR5 and HIV-binding C-type lectin receptors on endometrial cell subsets. We therefore assessed endometrial tissue sections from HIV seronegative women undergoing hysterectomy of a benign and non-inflammatory cause for phenotypic characterization of potential HIV target cells and receptors by immunohistochemistry. Langerin was expressed on intraepithelial CD1a+CD4+ and CD11c+CD4+ Langerhans cells. Furthermore, CCR5+CD4+CD3+ T cells, DC-SIGN+MR+CD11c+ myeloid dendritic cells and MR+CD68+ macrophages were found within or adjacent to the epithelium of the uterine lumen. In addition, occasional CD123+ BDCA-2+ plasmacytoid dendritic cells were detected deep in the endometrial stroma. Both T cells and several antigen-presenting cells were detected in lymphoid aggregate formations in close proximity to the epithelial lining. The finding of intraepithelial and stromal Langerin+ cells as well as CCR5+ CD4+ T cells is novel for human endometrium.  相似文献   

16.
Epidermal Langerhans cells (LC) and dermal interstitial dendritic cells (IDC) were found to express the ATP-binding cassette (ABC) transporter breast cancer resistance protein (BCRP; ABCG2). Also, low BCRP expression was present on CD34(+) blood DC precursors and expression was increased upon their differentiation to LC. The CD34(+) acute myeloid leukemia-derived DC cell line MUTZ3 can be cultured into LC or IDC, depending on the cytokine cocktail used. Introduction of functional BCRP in MUTZ3 progenitor cells through retroviral transduction resulted in the emergence of typical LC-characteristics in IDC cultures; the majority of cells remained negative for the IDC-specific C-type lectin DC-SIGN, but rather displayed enhanced expression of the LC-specific C-type lectin Langerin and characteristic high expression levels of CD1a. BCRP-induced skewing toward LC-like differentiation coincided with early RelB expression in 'IDC', derived from MUTZ3-BCRP, and depended on endogenous transforming growth factor beta (TGF-β) production. Intriguingly, cellular BCRP localization differed between skin LC and IDC, and a more cytoplasmic BCRP localization, as observed in primary skin LC, seemed to relate to LC-like differentiation in IDC cultures upon BCRP introduction in MUTZ3 progenitors. Together these data support a role for BCRP in preferential LC differentiation from CD34(+) myeloid DC progenitors.  相似文献   

17.
We have identified a novel member of the calcium-dependent (C-type) lectin family. This molecule, designated DCIR (for dendritic cell (DC) immunoreceptor), is a type II membrane glycoprotein of 237 aa with a single carbohydrate recognition domain (CRD), closest in homology to those of the macrophage lectin and hepatic asialoglycoprotein receptors. The intracellular domain of DCIR contains a consensus immunoreceptor tyrosine-based inhibitory motif. A mouse cDNA, encoding a homologous protein has been identified. Northern blot analysis showed DCIR mRNA to be predominantly transcribed in hematopoietic tissues. The gene encoding human DCIR was localized to chromosome 12p13, in a region close to the NK gene complex. Unlike members of this complex, DCIR displays a typical lectin CRD rather than an NK cell type extracellular domain, and was expressed on DC, monocytes, macrophages, B lymphocytes, and granulocytes, but not detected on NK and T cells. DCIR was strongly expressed by DC derived from blood monocytes cultured with GM-CSF and IL-4. DCIR was mostly expressed by monocyte-related rather than Langerhans cell related DC obtained from CD34+ progenitor cells. Finally, DCIR expression was down-regulated by signals inducing DC maturation such as CD40 ligand, LPS, or TNF-alpha. Thus, DCIR is differentially expressed on DC depending on their origin and stage of maturation/activation. DCIR represents a novel surface molecule expressed by Ag presenting cells, and of potential importance in regulation of DC function.  相似文献   

18.
Previously we identified the novel type II lectin receptor, dectin-1, that is expressed preferentially by murine antigen presenting dendritic cells (DC) and is involved in co-stimulation of T cells by DC. To identify the human homologue (DECTIN-1), we employed degenerative PCR amplification of mRNA isolated from DC and subsequent cDNA cloning. DECTIN-1 is a type II lectin receptor with high homology to type II lectin receptors expressed by natural killer (NK) cells. It contains an immunoreceptor tyrosine-based activation motif within the cytoplasmic domain. Human DECTIN-1 mRNA is expressed predominantly by peripheral blood leukocytes and preferentially by DC. The mRNA likely encodes a 33 kDa glycoprotein. In human epidermis, the protein is expressed selectively by Langerhans cells, which are an epidermal subset of DC. A truncated form of DECTIN-1 RNA (termed T beta) encodes for a polypeptide lacking almost the entire neck domain, which is required for accessibility of the carbohydrate recognition domain to ligands. Genome analysis showed the deleted amino acid sequence in T beta to be encoded by an exon, indicating that T beta RNA is produced by alternative splicing. DECTIN-1 gene maps to chromosome 12, between p13.2 and p12.3, close to the NK gene complex (12p13.1 to p13.2) which contains genes for NK lectin receptors. Our results indicate that human DECTIN-1 shares many features with mouse dectin-1, including the generation of neck domain-lacking isoforms, which may down-regulate the co-stimulatory function of dectin-1.  相似文献   

19.
Activins are members of the transforming growth factor-beta (TGF-beta) family and are important for skin morphogenesis and wound healing. TGF-beta1 is necessary for the population of the epidermis with Langerhans cells (LC). However, a role for activin in LC biology is not known. To address this question, we analyzed skin from transgenic mice overexpressing the activin antagonist follistatin in the epidermis. Using immunofluorescence, we observed a striking decrease in the number of LC in the epidermis of transgenic mice in comparison to wild-type mice. Nevertheless, these LC expressed normal levels of major histocompatibility complex (MHC)-class II and Langerin/ CD207 in situ. In explant cultures of whole ear skin the number of dendritic cells (DC), which migrated into the culture medium, was reduced. This reduction was even more pronounced in cultures of epidermal sheets. Virtually all emigrated cutaneous DC displayed typical morphology with cytoplasmic "veils", showed translocation of MHC-class II to the surface membrane, and expressed the maturation marker 2A1. Thus, cutaneous DC from transgenic mice seemed to mature normally. These results demonstrate that overexpression of follistatin in the epidermis affects LC trafficking but not maturation and suggest a novel role of the follistatin-binding partner activin in LC biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号