首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Trp-free αA-crystallin mutant (W9F) was prepared by site-directed mutation. This mutant appears to be identical to the wild-type in terms of conformation (secondary and tertiary structures). W9F was labeled with a sulfhydryl-specific fluorescent probe, 2-(4′-maleimidylanilino) naphthalene-6-sulfonate (MIANS), and used in a subunit exchange between αA- and αA-crystallins as well as between αA- and αB-crystallins, studied by measurement of fluorescence resonance energy transfer. Energy transfer was observed between Trp (donor, with emission maximum at 336 nm) of wild-type αA- or αB-crystallin and MIANS (acceptor, with absorption maximum at 313 nm) of labeled W9F when subunit exchange occurred. Time-dependent decrease of Trp and increase of MIANS fluorescence were recorded. The exchange was faster at 37°C than at 25°C. The energy transfer efficiency was greater between homogeneous subunits (αA-αA) than between heterogeneous subunits (αA-αB). A previous exchange study with isoelectric focusing indicated a complete but slow exchange between αA and αB subunits. The present study showed that the exchange was a fast process, and the different energy transfer efficiencies between αA-αA and αA-αB indicated that αA- and αB-crystallins were not necessarily structurally equivalent.  相似文献   

2.
When 36-hour-old dark grown radish seedlings are transferred to far-red light, there is a decrease in cytoplasmic β-fructosidase (βF) and an increase in cell wall βF compared to the dark controls. Cytoplasmic and cell wall-bound β-fructosidase are both glycoproteins and exhibit high antigenic similarities, but differ according to charge heterogeneity and carbohydrate microheterogeneity. Growth of radish seedlings in the presence of tunicamycin results in a partial inhibition of βF glycosylation but nonglycosylated βF still accumulates in the cell wall under far-red light. Thus, glycosylation is not necessary for intracellular transport, for correct targetting, or for wall association of an active βF. The nonglycosylated cytoplasmic and cell wall βF forms have the same relative molecular mass but glycosylated forms have different oligosaccharide side-chains, with respect to size and susceptibility to α-mannosidase and endoglycosidase D digestion. The oligosaccharides of both forms are partly removed by endoglycosidase H when βF is denatured. Isoelectric focusing analysis of βF shows that the cell wall-associated isozymes are more basic than the cytoplasmic isozymes, and that the charge heterogeneity also exists within a single plant. A time course of changes in βF zymograms shows a far red light stimulation of the appearance of the basic forms of the enzyme. However, the more basic cell wall specific βF forms are not present when N-glycosylation is prevented with tunicamycin. These results indicate that cytoplasmic and cell wall βF probably have common precursor polypeptides and basic cell wall forms arise via processing events which are tunicamycin sensitive.  相似文献   

3.
As F9 stem cells differentiate into parietal endoderm they form focal adhesion sites. There is a concomitant decrease in the level of phosphorylation of S785 in the cytoplasmic domain of the β1 integrin subunit. Previous transfection studies demonstrate that site-specific mutations at this residue, mimicking different phosphorylation states, can alter the subcellular localization of the subunit in differentiating F9 cells. We now extend these observations in an attempt to substantiate the function of β1 phosphorylation and determine how the phosphorylation levels are regulated. We show that treatment of parietal endoderm with okadaic acid induces an increase in β1 phosphorylation and selective loss of β1 from focal adhesion sites. Using a PCR approach, we identify two phosphatases expressed in parietal endoderm, including PP2A. Using a crosslinking approach, where antibodies are added to live cells, we show that the catalytic subunit of PP2A co-immunoprecipitates with β1. Immunocytochemistry shows PP2A colocalizing to focal adhesion sites with β1. In addition integrin-linked kinase (ILK) co-immunoprecipitates with β1 in parietal endoderm and localizes to focal adhesion sites. Okadaic acid treatment significantly decreases the level of ILK associated with β1. A possible role for regulated β1 phosphorylation in cell migration is discussed.  相似文献   

4.
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation.  相似文献   

5.
In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.  相似文献   

6.
7.
Hepatitis C virus (HCV) F protein is encoded by the +1 reading frame of the viral genome. It overlaps with the core protein coding sequence, and multiple mechanisms for its expression have been proposed. The full-length F protein that is synthesized by translational ribosomal frameshift at codons 9 to 11 of the core protein sequence is a labile protein. By using a combination of genetic, biochemical, and cell biological approaches, we demonstrate that this HCV F protein can bind to the proteasome subunit protein α3, which reduces the F-protein level in cells in a dose-dependent manner. Deletion-mapping analysis identified amino acids 40 to 60 of the F protein as the α3-binding domain. This α3-binding domain of the F protein together with its upstream sequence could significantly destabilize the green fluorescent protein, an otherwise stable protein. Further analyses using an F-protein mutant lacking lysine and a cell line that contained a temperature-sensitive E1 ubiquitin-activating enzyme indicated that the degradation of the F protein was ubiquitin independent. Based on these observations as well as the observation that the F protein could be degraded directly by the 20S proteasome in vitro, we propose that the full-length HCV F protein as well as the F protein initiating from codon 26 is degraded by an ubiquitin-independent pathway that is mediated by the proteasome subunit α3. The ability of the F protein to bind to α3 raises the possibility that the HCV F protein may regulate protein degradation in cells.  相似文献   

8.
R6K-encoded π protein can bind to the seven, 22 bp tandem iterons of the γ origin. In this work, we use a variant of π, His-π·F107S, that is hyperactive in replication. In vitro, His-π·F107S-dependent local DNA melting (open complex formation) occurs in the absence of host proteins (IHF/HU or DnaA) and it is positioned in the A + T-rich region adjacent to iterons. Experiments described here examine the effects of ATP, Mg2+ and temperature on the opening reaction. We show that the opening of the γ origin can occur in the presence of ATP as well as AMP-PCP (a non-hydrolyzable ATP analog). This suggests that, for γ origin, ATP hydrolysis may be unnecessary for open complex formation facilitated by His-π·F107S. In the absence of ATP or Mg2+, His-π·F107S yielded data suggestive of distortions in the iteron attributable to DNA bending rather than DNA melting. Our findings also demonstrate that ATP and π stimulate open complex formation over a wide range of temperatures, but not at 0°C. These and other results indicate that ATP and/or Mg2+ are not needed for His-π·F107S binding to iterons and that ATP effects an allosteric change in the protein bound to γ origin.  相似文献   

9.
Age-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh−/−), shows hallmarks of early AMD. The ocular phenotype has been further analysed to demonstrate amyloid beta (Aβ) rich basement membrane deposits associated with activated complement C3. Cfh−/− mice were treated systemically in both prophylactic and therapeutic regimes with an anti-Aβ monoclonal antibody (mAb), 6F6, to determine the effect on the cfh−/− retinal phenotype. Prophylactic treatment with 6F6 demonstrated a dose dependent reduction in the accumulation of both Aβ and activated C3 deposition. A similar reduction in the retinal endpoints could be seen after therapeutic treatment. Serum Aβ levels after systemic administration of 6F6 show accumulation of Aβ in the periphery suggestive of a peripheral sink mechanism. In summary, anti-Aβ mAb treatment can partially prevent or reverse ocular phenotypes of the cfh−/− mouse. The data support this therapeutic approach in humans potentially modulating two key elements in the pathogenesis of AMD – Aβ and activated, complement C3.  相似文献   

10.
Cell migration is critically involved in inflammation, cancer, and development. In this study, transforming growth factor-β-induced protein (βig-h3) was identified as a substrate of matrix metalloproteinase-9 (MMP-9) by site-directed mutagenesis. βig-h3 has two cleavage sites with the consensus sequence Pro-Xaa-Xaa-Hy-(Ser/Thr) (Hy is a hydrophobic amino acid) (PGSFT beginning at amino acid 135 and PPMGT beginning at amino acid 501). Using recombinant human βig-h3 and MMP-9, βig-h3 from βig-h3-transfected HEK293F cells, and MMP-9 from MMP-9-transfected HEK293F cells, human macrophages, and neutrophils, we found that MMP-9 proteolytically cleaves βig-h3. Cleavage leads to the loss of its adhesive property and its release from extracellular matrix proteins, collagen IV, and fibronectin. Spheroids formed by increased cell-cell interactions were observed in βig-h3-transfected HEK293F cells but not in vehicle-transfected HEK293F cells. In human glioma U87MG cells, MMP-9 constitutive overexpression resulted in endogenous βig-h3 cleavage. βig-h3 cleavage by MMP-9 led to increased cell invasion, and βig-h3 knockdown also resulted in increased cell invasion. The βig-h3 fragment cleaved by MMP-9 could bind to the surface of macrophages, and it may play a role as a peptide chemoattractant by inducing macrophage migration via focal adhesion kinase/Src-mediated signal activation. Thus, intact βig-h3 is responsible for cell migration inhibition, cell-cell contact, and cell-extracellular matrix interaction. Experimental evidence indicates that MMP-9-cleaved βig-h3 plays a role in MMP-9-mediated tumor cell and macrophage migration.  相似文献   

11.
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system.  相似文献   

12.
The rate of cell-cycle initiation was studied in a-cells of S. cerevisiae in the presence of the synthetic analogue of α-factor [N-Trp, Arg7]-α-factor (TA-αF). It was shown that TA-αF lowers the rate constant of cell-cycle initiation (or transition probability) for each separate cell. It was concluded on the basis of these results that the term ‘arrest’ in G1 by α-factor should be interpreted in a quantitative sense as the decrease in the probability of the emergence from ‘start’ per unit time and not as being equivalent to an ‘all-or-none’ response. The dependence of the rate constant of the cell-cycle initiation on the concentration of TA-αF can be described by the Hill equation where n = 1.01 + 0.05 and K = 14.5 ± 2.5 nM (±S.E.). It is demonstrated that after transfer of cells into the medium with a higher or a lower concentration of TA-αF, the rate constant of cell-cycle initiation changes abruptly from one value to another after a lag-period of 30 and 40 min respectively. This suggests a multistep mechanism of action for α-factor. The difference in the lag-periods allows us to suggest that α-factor exerts its action by two independent pathways. Since the Hill coefficient is practically equal to unit, no cooperative interactions are likely to be involved at least in one of these pathways. The inhibition of cell-cycle initiation can be used as a more adequate and sensitive test for biological activity of α-factor as compared to morphological measurements.  相似文献   

13.
To probe Pol ζ functions in vivo via its error signature, here we report the properties of Saccharomyces cerevisiae Pol ζ in which phenyalanine was substituted for the conserved Leu-979 in the catalytic (Rev3) subunit. We show that purified L979F Pol ζ is 30% as active as wild-type Pol ζ when replicating undamaged DNA. L979F Pol ζ shares with wild-type Pol ζ the ability to perform moderately processive DNA synthesis. When copying undamaged DNA, L979F Pol ζ is error-prone compared to wild-type Pol ζ, providing a biochemical rationale for the observed mutator phenotype of rev3-L979F yeast strains. Errors generated by L979F Pol ζ in vitro include single-base insertions, deletions and substitutions, with the highest error rates involving stable misincorporation of dAMP and dGMP. L979F Pol ζ also generates multiple errors in close proximity to each other. The frequency of these events far exceeds that expected for independent single changes, indicating that the first error increases the probability of additional errors within 10 nucleotides. Thus L979F Pol ζ, and perhaps wild-type Pol ζ, which also generates clustered mutations at a lower but significant rate, performs short patches of processive, error-prone DNA synthesis. This may explain the origin of some multiple clustered mutations observed in vivo.  相似文献   

14.
15.
Zeng X  Ni Z  Shi X  Wei J  Shen Y 《Photosynthesis research》2005,83(3):307-315
The previous work in our lab showed that the spinach chloroplast ATP synthase ε mutant with 3 amino acid residues deleted from the N-terminus had much lower ability to inhibit ATP hydrolysis and block proton leakage in comparison to a mutant with 1 or 2 residues deleted from the N-terminus. The present study aimed at determining whether there is special importance in the structure and function of the N-terminal third residue of the chloroplast ε subunit. The leucine residue at the N-terminal third site (Leu3) of the spinach chloroplast ε subunit was replaced with Ile, Phe, Thr, Arg, Glu or Pro by site-directed mutagenesis, forming mutants εL3I, εL3F, εL3T, εL3R, εL3E and εL3P, respectively. These ε variants all showed lower abilities to inhibit ATP hydrolysis and to block proton leakage, as compared to the wild type ε subunit (εWT). The abilities of mutants εL3I and εL3F to restore the ATP synthesis activity of reconstituted membranes were higher than those of εWT, but the abilities of the other ε variants were lower than that of εWT. These results indicate that the hydrophobic and neutral characteristics of Leu3 of the chloroplast ε subunit are very important for its ability to inhibit ATP hydrolysis and block proton leakage, and for the ATP synthesis ability of ATP synthase.  相似文献   

16.
We have generated F9 murine embryonal carcinoma cells in which either the retinoid X receptor (RXR)α and retinoic acid receptor (RAR)α genes or the RXRα and RARγ genes are knocked out, and compared their phenotypes with those of wild-type (WT), RXRα−/−, RARα−/−, and RARγ−/− cells. RXRα−/−/ RARα−/− cells were resistant to retinoic acid treatment for the induction of primitive and parietal endodermal differentiation, as well as for antiproliferative and apoptotic responses, whereas they could differentiate into visceral endodermlike cells, as previously observed for RXRα−/− cells. In contrast, RXRα−/−/RARγ−/− cells were defective for all three types of differentiation, as well as antiproliferative and apoptotic responses, indicating that RXRα and RARγ represent an essential receptor pair for these responses. Taken together with results obtained by treatment of WT and mutant F9 cells with RAR isotype– and panRXR-selective retinoids, our observations support the conclusion that RXR/ RAR heterodimers are the functional units mediating the retinoid signal in vivo. Our results also indicate that the various heterodimers can exert both specific and redundant functions in differentiation, proliferation, and apoptosis. We also show that the functional redundancy exhibited between RXR isotypes and between RAR isotypes in cellular processes can be artifactually generated by gene knockouts. The present approach for multiple gene targeting should allow inactivation of any set of genes in a given cell.  相似文献   

17.
The semiempirical CNDO/2 SCF MO method using the tight-binding approximation for polymers has been applied to poly(β-hydroxy-l-proline), β-PHP, to compare the electronic structure of β-PHP with that of poly(γ-hydroxy-l-proline), γ-PHP, which we have described in a previous publication. The results obtained show the preferred orientation of the OH group at the β-position of the pyrrolidine ring. The different situation between β-PHP and γ-PHP is briefly discussed. Analysis of the calculated results shows that the energy difference between the two species is not sufficient to deny the existence of either form. This agrees well with the experimental results. The conformational stability between the trans and cis forms of the H---:C---:O---:H group is explained by using the calculated results in connection with the previous experimental and theoretical treatments. From the analysis of the total energy, the dominant stabilizing factors are discussed.  相似文献   

18.
19.

Background

α-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for α-particle emitting isotopes facilitating selective tumor therapies.

Principal Findings

A dimer of the vascular tumor homing peptide F3 was chemically coupled to the α-emitter 213Bi (213Bi-DTPA-[F3]2). We found 213Bi-DTPA-[F3]2 to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of 213Bi-DTPA-[F3]2 we treated mice bearing intraperitoneally growing xenograft tumors with 213Bi-DTPA-[F3]2. In a tumor prevention study between the days 4–14 after inoculation of tumor cells 6×1.85 MBq (50 µCi) of 213Bi-DTPA-[F3]2 were injected. In a tumor reduction study between the days 16–26 after inoculation of tumor cells 6×1.85 MBq of 213Bi-DTPA-[F3]2 were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found 213Bi-DTPA-[F3]2 to accumulate in tumors but only low activities were found in control organs except for the kidneys, where 213Bi-DTPA-[F3]2 is found due to renal excretion.

Conclusions/Significance

In conclusion we report that 213Bi-DTPA-[F3]2 is a novel tool for the targeted delivery of α-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号