首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

3.
Many endophytic fungi are known to protect plants from plant pathogens, but the antagonistic mechanism has rarely been revealed. In this study, we wished to learn whether an endophytic Aspergillus sp., isolated from Taxus mairei, would indeed produce bioactive components, and if so whether (a) they would antagonize plant pathogenic fungi; and (b) whether this Aspergillus sp. would produce the compound also under conditions of confrontation with these fungi. The endophytic fungal strain from T. mairei was identified as Aspergillus clavatonanicus by analysis of morphological characteristics and the sequence of the internal transcribed spacers (ITS rDNA) of rDNA. When grown in surface culture, the fungus produced clavatol (2′,4′-dihydroxy-3′,5′-dimethylacetophenone) and patulin (2-hydroxy-3,7-dioxabicyclo [4.3.0]nona-5,9-dien-8-one), as shown by shown by NMR, MS, X-ray, and EI-MS analysis. Both exhibited inhibitory activity in vitro against several plant pathogenic fungi, i.e., Botrytis cinerea, Didymella bryoniae, Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani, and Pythium ultimum. During confrontation with P. ultimum, A. clavatonanicus antagonized its growth of P. ultimum, and both clavatol as well as patulin were formed as the only bioactive components, albeit with different kinetics. We conclude that A. clavatonanicus produces clavatol and patulin, and that these two polyketides may be involved in the protection of T. mairei against attack by plant pathogens by this Aspergillus sp.  相似文献   

4.
Phylogeographic analyses using chloroplast DNA (cpDNA) variation were performed for Pedicularis ser. Gloriosae (Orobanchaceae). Eighty-one plants of 18 populations of 6 species (P. gloriosa, P. iwatensis, P. nipponica, P. ochiaiana, P. sceptrum-carolinum and P. grandiflora) were analyzed. Fifteen distinct haplotypes were identified based on six cpDNA regions: the intergenic spacer between the trnT and trnL 3′exon, trnL 3′exon-trnF, atpB-rbcL, accDpsaI, the rpl16 intron and the trnK region (including the matK gene). Via phylogenetic analyses of the haplotypes, two continental species, P. sceptrum-carolinum and P. grandiflora, were placed at the most ancestral position in the trees. The former species is widely distributed in the Eurasian continent, and the latter is distributed in Far East Asia. Two robust major cpDNA clades (clades I and II) were revealed in the Japanese archipelago, although the statistical values of monophyly of these clades were weak. Clade I included the haplotypes (A-1, A-2, B-1, B-2 and J) of three species (P. gloriosa, P. iwatensis and P. ochiaiana), and Clade II included seven haplotypes (C-D, E-1, E-2 and F-H) of P. nipponica. These results suggest that this series originated on the Eurasian continent and that subsequently populations at the eastern edge of the continent differentiated into the two Japanese lineages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
He X  Xu X  Liu B 《Molecular biology reports》2009,36(7):1819-1824
The products of mammalian LPIN2 and LPIN3 are phosphatidate phosphatase type 1 enzymes, which play an important role in the de novo biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine. In this study, we obtained a 2,985-bp cDNA sequence of porcine LPIN2, which contains a 2,676-bp open reading frame flanked by an 11-bp 5′UTR and a 298-bp 3′UTR, and a 2,843-bp cDNA sequence of porcine LPIN3, which contains a 111-bp 5′UTR, a 2,580-bp open reading frame and a 152-bp 3′UTR. RT-PCR analysis showed that both LPIN2 and LPIN3 mRNA were ubiquitously expressed with a very high level in liver. By using the somatic cell hybrid panel (SCHP) and the radiation hybrid (IMpRH) panel, porcine LPIN2 and LPIN3 were assigned to 6q24-(1/2)q31 and 17(1/2)q21-q23, respectively. One T2193C single nucleotide polymorphism in LPIN2 was identified and was detected by Hin6I PCR-RFLP. Association analysis showed that different genotypes of LPIN2 were associated with back-fat thickness between the 6th and 7th ribs (P < 0.01).  相似文献   

6.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5′ MAR, Nicotiana tabacum Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated. Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306.  相似文献   

7.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

8.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

9.
10.
11.
A cDNA corresponding to the nitrate reductase (NR) gene from Dunaliella salina was isolated by RT-PCR and (5′/3′)-RACE techniques. The full-length cDNA sequence of 3,694 bp contained an open reading frame of 2,703 bp encoding 900 amino acids, a 5′-untranslated region of 151 bp and a 3′-untranslated sequence of 840 bp with a poly (A) tail. The putative gene product exhibited 78%, 65%, 59% and 50% identity in amino acid sequence to the corresponding genes of Dunaliella tertiolecta, Volvox carteri, Chlamydomonas reinhardtii, and Chlorella vulgaris, respectively. Phylogenetic analysis showed that D. salina NR clusters together with known NR proteins of the green algae. The molecular mass of the encoded protein was predicted to be 99.5 kDa, with an isoelectric point of 8.31. This protein shares common structural features with NRs from higher plants and green algae. The full-length cDNA was heterologously expressed in Escherichia coli as a fusion protein, and accumulated to up to 21% of total bacteria protein. Recombinant NR protein was active in an enzyme assay, confirming that the cloned gene from D. salina is indeed NR.  相似文献   

12.
Aminoglycoside resistance in six clinically isolated Staphylococcus aureus was evaluated. Genotypical examination revealed that three isolates (HLGR-10, HLGR-12, and MSSA-21) have aminoglycoside-modifying enzyme (AME) coding genes and another three (GRSA-2, GRSA-4, and GRSA-6) lacked these genes in their genome. Whereas isolates HLGR-10 and HLGR-14 possessed bifunctional AME coding gene aac(6′)-aph(2′′), and aph(3′)-III and showed high-level resistance to gentamycin and streptomycin, MSSA-21 possessed aph(3′)-III and exhibited low resistance to gentamycin, streptomycin, and kanamycin. The remaining three isolates (GRSA-2, GRSA-4, and GRSA-6) exhibited low resistance to all the aminoglycosides because they lack aminoglycoside-modifying enzyme coding genes in their genome. The transmission electron microscopy of the three isolates revealed changes in cell size, shape, and septa formation, supporting the view that the phenomenon of adaptive resistance is operative in these isolates.  相似文献   

13.
14.
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.  相似文献   

15.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

16.
17.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

18.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

19.
Ye X  Wang Y  Lin X 《Current microbiology》2011,63(5):477-483
Salmonella causes the majority of infections in humans and homeothermic animals. This article describes a specific polymerase chain reaction (PCR) method developed for a rapid identification of Salmonella. A gyrB-targeted species-specific primer pair, S-P-for (5′-GGT GGT TTC CGT AAA AGT A-3′) and S-P-rev (5′-GAA TCG CCT GGT TCT TGC-3′), was successfully designed. PCR with all the Salmonella strains produced a 366- bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 0.01 ng with genomic DNA or 3.2 cells per assay. Good specificity was also demonstrated by fecal samples, from which only the gyrB gene of Salmonella was amplified. Using the culture-PCR method, 27 isolates on Salmonella-Shigella (SS) medium were rapidly identified as Salmonella, which was confirmed by the sequencing of the gyrB gene.  相似文献   

20.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号