首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation by norepinephrine in physiological concentration was used on the dorsal skin of the Argentine tree-frog Phyllomedusa hypochondrialis azurea to trigger contraction of myoepithelial cells encircling the serous glands and provoke secretory release. This hylid species possesses two kinds of serous cutaneous glands, producing secretory granules or vesicles (type Ia and Ib serous units, respectively), along with serous-derived glands which synthesise lipids and store them in complex aggregates (type II units). Structural and ultrastructural observations on myoepithelia, secretory units and gland products collected in saline after discharge, revealed consistent but different responses in the three types investigated. Type Ia glands reacted intensely to treatment, with both contractile and secretory responses, type Ib glands were only mildly affected in their myoepithelia and glands of type II were not affected at all. According to data available in the literature, these findings suggest that: (a) the dense (type Ia) granules are expelled as a phasic response through bulk (holocrine) discharge, (b) the secretory (type Ib) vesicles are released as a tonic response through a merocrine mechanism and (c) lipid (type II) aggregates are exuded as a secretory component of a complex behavioural response which tends to reduce transcutaneous water loss. Furthermore, these findings indicate that the use of pharmacological modulation of myoepithelial activity allows selective collection of skin products in species characterised by serous gland polymorphism.  相似文献   

2.
Serous (poison) cutaneous glands of the leptodactylid species Physalaemus albonotatus and Leptodactylus chaquensis were compared using light and transmission electron microscopy. Glands in the two species share structural traits common in anurans, including the peripheral contractile sheath (myoepithelium) and the syncytial secretory unit that produces, stores, and modifies the poison. At the ultrastructural level, early steps of poison production are also similar and fit the usual path of proteosynthesis, involving rough endoplasmic reticulum (RER) and Golgi stacks (dictyosomes) in the peripheral syncytial cytoplasm. However, several differences are obvious during the maturational processes that lead post-Golgian products to their ultimate ultrastructural traits. In P. albonotatus, the dense product released from the dictyosomes acquires a thick repeating substructure, which, however, becomes looser in the inner portion of the syncytium. In L. chaquensis, serous maturation involves gradual condensation, and opaque, somewhat "vacuolized" granules are formed. These different maturational paths expressed during poison manufacturing in the two species agree with the polyphyletic origin of the family Leptodactylidae. On the other hand, data collected for P. albonotatus fit previous findings from P. biligonigerus and stress the view that poisons produced by congeneric species share similar (or identical) ultrastructural features.  相似文献   

3.
We examined the development of serous (poison) cutaneous glands in larval and juvenile Scinax nasica (Hylidae) at the ultrastructural level. We describe the biosynthesis and maturation of the cutaneous poison in comparison with the corresponding processes in representatives of Discoglossidae, Leptodactylidae, Pelobatidae and Pipidae. Serous biosynthesis in S. nasica starts in discrete adenoblasts and continues in the syncytial secretory unit. Biosynthetic processes involve rough endoplasmic reticulum and the Golgi apparatus, that releases membrane-bounded material, varying from fine grained to flocculent. During the post-Golgian secretory phase, this material undergoes initial maturation, and two products are formed: dense granules and larger vesicles holding a thin substance that will later be structured into a three-dimensional, honeycomb-like net. Both the secretory granules and vesicles change into glomerular-like aggregates of bowed, rod-shaped subunits (modules). In adult frogs, formation of dense granules is bypassed. The modular granule substructure seems to be related to the merocrine release of small amounts of poison, involved in regulating skin homeostasis. Comparison with maturational changes in larval glands of species representing four anuran families discloses similar patterns in the Leptodactylidae, but production of opaque homogeneous granules occurs in the Discoglossidae, clear vesicles in the Pelobatidae and aggregates of dense bars in the Pipidae.  相似文献   

4.
The mental glands of Hydromantes genei are considered a specialized form of the urodele serous cutaneous glands. Use of a variety of techniques of maceration and digestion as well as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) has shown the three-dimensional morphology of secretory and myoepithelial cells. Secretory cells are pyramidal and rest on an almost continuous layer of myoepithelial cells. The latter have a long ribbon-like body from which branch off transversal and longitudinal processes with swallow-tailed ends. Cytoplasmic processes of secretory cells, containing irregular dense vesicles, squeeze through clefts between myoepithelial cells and may reach, at some points, the basal lamina. The interstices between myoepithelium and secretory cells are extraordinarily rich in nerve endings with clear vesicles. The glandular outlets appear as elliptical stomata in the superficial layer of the epidermis and are lined by horny cells, which invaginate to circumscribe the excretory duct. The morphological results indicate that the myoepithelium of Plethodontidae mental glands differ in some respects from that of amphibian serous cutaneous glands. A double polarity for the secretory cells is also suggested. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Transmission electron microscope investigations of the serous (poison) skin glands in the New World tree frogs Osteopilus septentrionalis and Phrynohyas venulosa revealed that they produce granules with closely similar substructures, namely, a dense cortex and pale medulla. In both species these features, that contrast the complex, sometimes repeating patterns described in other hylid frogs, derive from similar secretory and maturational processes starting from the Golgi phase of poison biosynthesis. Observations on secretory discharge showed that the two species share common release mechanisms, based on bulk discharge (holocrine) processes. Our data provide novel evidence of the extensive ultrastructural polymorphism of serous skin products in Hylidae and agree with phylogenies that regard this family as polyphyletic in origin. Assuming that ultrastructural features of cutaneous poison biosynthesis and maturation are adequate clues for tracking anuran phylogeny, the present findings also support a close relationship between Osteopilus and Phrynohyas taxa as previously suggested by osteological evidence.  相似文献   

6.
The development of serous cutaneous glands is described in tadpoles of the leptodactylid frog Physalaemus biligonigerus , with attention to the cytodifferentiation processes of the secretory unit (adenomere). Secretory differentiation causes the adenomere to assume the structure of a syncytium and triggers biosynthesis of the serous product (poison), consisting of granules with peculiar repeating substructure. The secretory granules resemble glomerular-like aggregates of randomly orientated tubular subunits. This complex substructure derives from the rearrangement of the dense, compact material released by the Golgi apparatus in the form of small, membrane-bounded particles. Both early and advanced features of P. biligonigerus poison closely resemble those found during serous gland development in the Italian treefrog Hyla intermedia . The similar aspects described during serous biosynthesis in these leptodactylid and hylid frogs suggest they are phylogenetically informative. On the other hand, the peculiar features of their poisons may reflect the differential patternings of their secretory repertories along the divergent phylogenetic paths, which led these frogs to be currently included in different families.  相似文献   

7.
Beside the ordinary granular (or serous) glands, the skin of the leptodactylid frog Physalaemus biligonigerus possesses peculiar clusters of large granular units, the 'inguinal' glands, located in the dorsolateral areas of the pelvic girdle. Both gland types store their specific products within the syncytial cytoplasm of the secretory unit. These secretory materials consist of spheroidal or ellipsoidal bodies (granules) with a repeating substructure. The subcellular features of the immature products of the ordinary serous and inguinal glands are identical. However, these products undergo divergent maturative processes, leading to fluidation on the one hand and condensation on the other. Secretory release into the small gland lumen was observed in both cases, involving merocrine mechanisms. On the basis of the analysis of cutaneous serous gland polymorphism in anurans, the inguinal units in P. biligonigerus do not appear to be an independent line. Rather, these large units belong to the ordinary serous type and represent a gland population specialized in the storage of remarkable amounts of product used in chemical defence of the skin.  相似文献   

8.
The morphological evolution of the cutaneous venom during ontogenesis in the tree-frog Hyla arborea arboreais described using light and electron microscopy. Venom biosynthesis involves the rough endoplasmic reticulum and Golgi stacks. The secretory product first appears at the hind-limb larval stage in the form of aggregates of small granules or larger, more elaborate structures, both contained in Golgi stacks. Maturative evolution proceeds through the merging of these secretion storage bodies and leads to the remarkable morphological heterogeneity characteristic of the venom of premetamorphic larvae and juveniles. However, large structures, resulting from the aggregation of small granules arranged in a repeating pattern become the only secretory accumulation bodies found in fully developed glands. In juveniles, discrete amounts of venom were seen to be discharged through exocytosis into the exiguous gland lumen, which lies just beneath the intercalated tract. These findings strongly contrast the traditional pattern of holocrine release characteristic of anuran serous glands. The merocrine release of tiny venom particles is consistent with the regulative roles—relevant to the skin physiology—performed by component molecules of anuran cutaneous venoms.  相似文献   

9.
Serous cutaneous glands are described in newly metamorphosed and juvenile specimens of the horned frog Ceratophrys ornata using light and transmission electron microscopy. We report patterns of biosynthesis and maturation of the specific product of the gland secretory unit. The syncytial, secretory compartment possesses a complex of endoplasmic reticulum (predominantly smooth endoplasmic reticulum after metamorphosis) and Golgi stacks. The serous product is weak in density and is contained in vesicles involved in repeating merging processes. During this maturation activity, secondary lysosomes are observed, which derive from autophagic processes (crinophagy) involving the secretory materials. Ceratophrys ornata, a species representative of the type genus of the family Ceratophrydae, belongs to the heterogeneous group of anurans that, possibly as the result of convergence, all produce cutaneous poisons consisting of vesicles or faint density granules.  相似文献   

10.
Many anuran species are characterized by sexually dimorphic skin glands. These glands often are concentrated on specific areas, such as the mental region, flanks, or the nuptial pads. We studied the histology and histochemistry of mental and lateral glands in Hypsiboas punctatus, and compared them to skin from other body regions. We describe four types of dermal glands, two types of mucous and two types of serous glands. The mucous glands are formed by a single layered epithelium. The mucocytes surrounding a central lumen are filled with polyhedral granules. Ordinary mucous glands are small sized glands with cubical epithelium, mucoid content, and small granules. Specialized mucous glands are characterized by a larger size, a columnar epithelium, a proteinaceous content and larger granules. Both types of serous glands are syncytial and share some structural features including size, shape, and morphology of secretory granules. However, ordinary and specialized serous glands differ in their histochemical properties, size and appearance of secretory granules, and glandular outlets. The specialized type of mucous glands in H. punctatus resembles most SDSGs described in anurans, whereas the presence of specialized serous glands that are sexually dimorphic is less common. Both specialized glands occur only in mental and lateral regions of males, whereas ordinary mucous and ordinary serous glands occur in males and females. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

12.
Ultrastructure of the submandibular gland in 2 species of macaques   总被引:1,自引:0,他引:1  
T Nagato  B Tandler 《Acta anatomica》1986,126(4):255-262
The ultrastructure of the submandibular glands was studied in 2 species of macaques (Macaca mulatta and Macaca irus). The glands, which were identical in both species, were predominantly serous, but contained scattered mucous acini. The serous cells contained 1 of 2 morphologically distinct secretory granules of complex substructure, whereas mucous droplets were relatively simple in structure. Other parts of the macaque glands were similar to their counterparts in other primates. The close resemblance of the serous granules to each other in the 2 species studied and to 3 other macaque species previously described by others suggests that these monkeys are taxonomically closely related.  相似文献   

13.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

14.
The eyelids of the newt were studied in 10 microns serial paraffin and 1-2 microns plastic sections using standard histological stains and special stains for glycoconjugates. The eyelids contain four different glands. Simple acinar serous and simple acinar mucous glands occur in the skin; unicellular mucous glands occur in the conjunctiva; and convoluted tubular seromucous glands are present in connective tissue beneath the conjunctiva. The first two are identical to cutaneous glands found elsewhere on the head and body. The simple acinar serous glands are surrounded by myoepithelial cells and release their secretion, which is composed largely of proteins with minimal glycoconjugate content, by a holocrine mechanism. The secretory product of the simple acinar mucous glands is composed of neutral glycoconjugates with a minor content of acidic glycoconjugates; the mucin exhibits strong PAS and PAPD staining and weak staining by AB and PAPS methods. The unicellular conjunctival mucous glands secrete both neutral and acidic glycoconjugates as shown by positive reactions with PAS, PAPD, PAPS, and AB methods. Convoluted tubular seromucous glands in the ventral eyelid synthesize both proteins and neutral glycoconjugates. The mucous secretions of the conjunctival glands probably provide lubrication and protection for the cornea.  相似文献   

15.
The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.  相似文献   

16.
There are two main epithelial cell types in the secretory tubules of mammalian glands: serous and mucous. The former is believed to secrete predominantly water and antimicrobials, the latter mucins. Primary cultures of human airway gland epithelium have been available for almost 20 yr, but they are poorly differentiated and lack clear features of either serous or mucous cells. In this study, by varying growth supports and media, we have produced cultures from human airway glands that in terms of their ultrastructure and secretory products resemble either mucous or serous cells. Of four types of porous-bottomed insert tested, polycarbonate filters (Transwells) most strongly promoted the mucous phenotype. Coupled with the addition of epidermal growth factor (EGF), this growth support produced “mucous” cells that contained the large electron-lucent granules characteristic of native mucous cells, but lacked the small electron-dense granules characteristic of serous cells. Furthermore, they showed high levels of mucin secretion and low levels of release of lactoferrin and lysozyme (markers of native serous cells). By contrast, growth on polyethylene terephthalate filters (Cyclopore) in medium lacking EGF produced “serous” cells in which small electron-dense granules replaced the electron-lucent ones, and the cells had high levels of lactoferrin and lysozyme but low levels of mucins. Measurements of transepithelial resistance and short-circuit current showed that both “serous” and “mucous” cell cultures possessed tight junctions, had become polarized, and were actively secreting Cl.  相似文献   

17.
Two serous gland types (I and II) in the skin of the Argentine toad Melanophryniscus stelzneri were discovered using light and electron microscopy. Glands of the two types differ in several traits: features of the products (both mature and immature), organelles involved in biosynthesis, and paths of serous maturation. No consistent differences, however, were detected between the myoepithelial sheaths encircling the secretory units. Type I glands manufacture vesicles containing a single dense body with a repeating substructure and conform to the fundamental secretory line of bufonid skin, a secretory line involved in biosynthesis of steroids. Type II glands synthesize granules of varying densities and seem to belong to a line of glands that secrete proteinaceous products. The occurrence of the two serous gland types in Melanophryniscus stelzneri is discussed in a comparison with current literature on the morphofunctional characteristics of anuran poison glands, which perform both regulative and defensive roles. It is suggested that di- or polymorphism in serous glands is an adaptive trait that allows differential release of active molecules on the body surface. J. Morphol. 237:19–32, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Mucous consists of glycoproteins and proteoglycans produced by specific secretory cells (mucocytes). In anurans the cutaneous mucous is produced by intradermal glands and displays both mechanical and chemical protection functions. Indeed, mucous maintains the integument moist and facilitates gas exchange (cutaneous respiration). In this work, the carbohydrate moiety distribution was investigated in the integument of Bufo ictericus using conventional and lectin histochemistry to describe the pattern of cutaneous glycoconjugate expression, including both secretory and structural proteoglycans. As a preliminary step, the descendent chromatography in Whatmann 1MM paper was undertaken to prepare the histochemical trials involving the lectins. In B. ictericus, the integument exhibits the basic morphological structure found in lower terrestrial vertebrates: the epidermis is a keratinized squamous stratified epithelium supported by spongious and compact layers. The spongy dermis contain secretory portion of both mucous and serous (or poison) glands. The paper chromatography identified galactose, fucose and mannose as characteristic sugar residues. The secretory cells of the mucous gland in the dermis, as well as the interstice between the stratum corneum and the subjacent stratum spinosum in the epidermis exhibit alpha-l-fucose and alpha-galactose residues. The serous glands give no reaction. The alpha-mannose residue was detected in the extracellular matrix of spongious dermis, but not in the dermal glands. The different glycoconjugate location reflects in two glycoconjugates categories: the secretory which participate in the water flow regulation, and the structural which is involved in the dermal maintenance.  相似文献   

19.
The development of the serous cells of the rat tongue was studied by light and electron microscopy and compared with the accumulation of lingual lipase, measured by triglyceride hydrolysis at pH 5.4. The lingual serous (von Ebner's) glands were initiated in 19- to 20-day fetuses as epithelial ingrowths from the vallate and foliate papillae. The cells contained mostly free polyribosomes, few RER cisternae, and a small Golgi apparatus. Branching of the cell cords began shortly after initiation, but formation of acini and production of secretory granules did not begin until 3–4 days postnatally. The acinar cells had abundant basal RER, a supranuclear Golgi apparatus, and apical secretory granules and attained adult appearance by 17–25 days. The serous demilune cells of the lingual mucous glands differentiated more rapidly than the lingual serous acinar cells, attaining functional secretory structure in Day 20 fetuses. Lipase activity was first detected in Day 20 fetuses and increased 14-fold by birth. The activity decreased 50% during the first suckling period, returned to birth levels 1 day later, and increased rapidly thereafter. By 17 days postnatally, lipase activity was 23% of the adult level, although activity per gram body weight was equal to the adult. The results suggest that lingual lipase is produced prenatally by the demilune cells of the lingual mucous glands and postnatally predominately by the lingual serous glands. Lingual lipase may play an important role in lipid digestion in neonates, when levels of pancreatic lipase are low.  相似文献   

20.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号