首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a β-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85°C and pH 6.0 and was extremely thermostable at 70°C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable β-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.  相似文献   

2.
Cellulases expressed by Cellulomonas fimi consist of a catalytic domain and a discrete non-catalytic cellulose-binding domain (CBD). To establish whether CBDs are common features of plant cell-wall hydroiases from C. fimi, the molecular architecture of xylanase D (XYLD) from this bacterium was investigated. The gene encoding XYLD, designated xynD, consisted of an open reading frame of 1936 bp encoding a protein of Mr 68000. The deduced primary sequence of XYLD was confirmed by the size (64kDa) and N-terminal sequence of the purified recombinant xylanase. Biochemical analysis of the purified enzyme revealed that XYLD is an endo-acting xylanase which displays no detectable activity against polysaccharides other than xylan. The predicted primary structure of XYLD comprised an /V-terminal signal peptide followed by a 190-residue domain that exhibited significant homology to Family-G xylanases. Truncated derivatives of xynD, encoding the W-terminal 193 amino acids of mature XYLD directed the synthesis of a functional xylanase, confirming that the 190-residue N-terminal sequence constitutes the catalytic domain. The remainder of the enzyme consisted of two approximately 90-residue domains, which exhibited extensive homology with each other, and limited sequence identity with CBDs from other polysaccharide hydrolases. Between the two putative CBDs is a 197-amino-acid sequence that exhibits substantial homology with Rhizobium NodB proteins. The four discrete domains in XYLD were separated by either threonine/prolineor novel glycine-rich linker regions. Although full-length XYLD adsorbed to cellulose, truncated derivatives of the enzyme lacking the C-terminal CBD hydrolysed xylan but did not bind to cellulose. Fusion of the C-terminal domain to glutathione-Stransferase generated hybrid proteins that bound to crystalline cellulose, but not to amorphous cellulose or xylan. The location of CBDs in a C. fimi xylanase indicates that domains of this type are not restricted to cellulases, but are widely distributed between hemicellutases also, and therefore play a pivotal role in the activity of the whole repertoire of plant cell-wall hydrolases. The role of the NodB homologue in XYLD is less certain.  相似文献   

3.
A xylanase gene (xynC) isolated from the anaerobic ruminal fungus Neocallimastix patriciarum was characterized. The gene consists of an N-terminal catalytic domain that exhibited homology to family 11 of glycosyl hydrolases, a C-terminal cellulose binding domain (CBD) and a putative dockerin domain in between. Each domain was linked by a short linker domain rich in proline and alanine. Deletion analysis demonstrated that the CBD was essential for optimal xylanase activity of the enzyme, while the putative dockerin domain may not be required for enzyme function.  相似文献   

4.
The modular endoglucanase Cel9B from Paenibacillus barcinonensis is a highly efficient biocatalyst, which expedites pulp refining and reduces the associated energy costs as a result. In this work, we set out to identify the specific structural domain or domains responsible for the action of this enzyme on cellulose fibre surfaces with a view to facilitating the development of new cellulases for optimum biorefining. Using the recombinant enzymes GH9–CBD3c, Fn3–CBD3b, and CBD3b, which are truncated forms of Cel9B, allowed us to assess the individual effects of the catalytic, cellulose binding, and fibronectin‐like domains of the enzyme on the refining of TCF kraft pulp from Eucalyptus globulus. Based on the physico‐mechanical properties obtained, the truncated form containing the catalytic domain (GH9–CBD3c) has a strong effect on fibre morphology. Comparing its effect with that of the whole cellulase (Cel9B) revealed that the truncated enzyme contributes to increasing paper strength through improved tensile strength and burst strength and also that the truncated form is more effective than the whole enzyme in improving tear resistance. Therefore, the catalytic domain of Cel9B has biorefining action on pulp. Although cellulose binding domains (CBDs) are less efficient toward pulp refining, evidence obtained in this work suggests that CBD3b alters fibre surfaces and influences paper properties as a result. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85 degrees C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA.  相似文献   

6.
The manA gene of Thermoanaerobacterium polysaccharolyticum was cloned in Escherichia coli. The open reading frame of manA is composed of 3,291 bases and codes for a preprotein of 1,097 amino acids with an estimated molecular mass of 119,627 Da. The start codon is preceded by a strong putative ribosome binding site (TAAGGCGGTG) and a putative -35 (TTCGC) and -10 (TAAAAT) promoter sequence. The ManA of T. polysaccharolyticum is a modular protein. Sequence comparison and biochemical analyses demonstrate the presence of an N-terminal leader peptide, and three other domains in the following order: a putative mannanase-cellulase catalytic domain, cellulose binding domains 1 (CBD1) and CBD2, and a surface-layer-like protein region (SLH-1, SLH-2, and SLH-3). The CBD domains show no sequence homology to any cellulose binding domain yet reported, hence suggesting a novel CBD. The duplicated CBDs, which lack a disulfide bridge, exhibit 69% identity, and their deletion resulted in both failure to bind to cellulose and an apparent loss of carboxymethyl cellulase and mannanase activities. At the C-terminal region of the gene are three repeats of 59, 67, and 56 amino acids which are homologous to conserved sequences found in the S-layer-associated regions within the xylanases and cellulases of thermophilic members of the Bacillus-Clostridium cluster. The ManA of T. polysaccharolyticum, besides being an extremely active enzyme, is the only mannanase gene cloned which shows this domain structure.  相似文献   

7.
A cellulosomal scaffoldin gene, termed cipBc, was identified and sequenced from the mesophilic cellulolytic anaerobe Bacteroides cellulosolvens. The gene encodes a 2,292-residue polypeptide (excluding the signal sequence) with a calculated molecular weight of 242,437. CipBc contains an N-terminal signal peptide, 11 type II cohesin domains, an internal family III cellulose-binding domain (CBD), and a C-terminal dockerin domain. Its CBD belongs to family IIIb, like that of CipV from Acetivibrio cellulolyticus but unlike the family IIIa CBDs of other clostridial scaffoldins. In contrast to all other scaffoldins thus far described, CipBc lacks a hydrophilic domain or domain X of unknown function. The singularity of CipBc, however, lies in its numerous type II cohesin domains, all of which are very similar in sequence. One of the latter cohesin domains was expressed, and the expressed protein interacted selectively with cellulosomal enzymes, one of which was identified as a family 48 glycosyl hydrolase on the basis of partial sequence alignment. By definition, the dockerins, carried by the cellulosomal enzymes of this species, would be considered to be type II. This is the first example of authentic type II cohesins that are confirmed components of a cellulosomal scaffoldin subunit rather than a cell surface anchoring component. The results attest to the emerging diversity of cellulosomes and their component sequences in nature.  相似文献   

8.
A Clostridium thermocellum gene, xynX, coding for a xylanase was cloned and the complete nucleotide sequence was determined. The xylanase gene of Clostridium thermocellum consists of an ORF of 3261 nucleotide encoding a xylanase (XynX) of 1087 amino acid residues (116 kDa). Sequence analysis of XynX showed a multidomain structure that consisted of four different domains: an N-terminal thermostabilizing domain homologous to sequences found in several thermophilic enzymes, a catalytic domain homologous to family 10 glycosyl hydrolases, a duplicated cellulose-binding domain (CBD) homologous to family IX CBDs, and a triplicated S-layer homologous domain. A deletion mutant of xynX having only the catalytic region produced a mutant enzyme XynX-C which retained catalytic activity but lost thermostability. In terms of half-life at 70 °C, the thermostability of XynX-C was about six times lower than that of the other mutant enzyme, XynX-TC, produced by a mutant containing both the thermostabilizing domain and the catalytic domain. The optimum temperature of XynX-C was about 5–10 °C lower than that of XynX-TC. Received: 12 January 2000 / Received revision: 24 April 2000 / Accepted: 1 May 2000  相似文献   

9.
Manduca sexta (tobacco hornworm) chitinase is a glycoprotein that consists of an N-terminal catalytic domain, a Ser/Thr-rich linker region, and a C-terminal chitin-binding domain. To delineate the properties of these domains, we have generated truncated forms of chitinase, which were expressed in insect cells using baculovirus vectors. Three additional recombinant proteins composed of the catalytic domain fused with one or two insect or plant chitin-binding domains (CBDs) were also generated and characterized. The catalytic and chitin-binding activities are independent of each other because each activity is functional separately. When attached to the catalytic domain, the CBD enhanced activity toward the insoluble polymer but not the soluble chitin oligosaccharide primarily through an effect on the Km for the former substrate. The linker region, which connects the two domains, facilitates secretion from the cell and helps to stabilize the enzyme in the presence of gut proteolytic enzymes. The linker region is extensively modified by O-glycosylation and the catalytic domain is moderately N-glycosylated. Immunological studies indicated that the linker region, along with elements of the CBD, is a major immunogenic epitope. The results support the hypothesis that the domain structure of insect chitinase evolved for efficient degradation of the insoluble polysaccharide to soluble oligosaccharides during the molting process.  相似文献   

10.
Endoglucanase B (CenB) from the bacterium Cellulomonas fimi is divided into five discrete domains by linker sequences rich in proline and hydroxyamino acids (A. Meinke, C. Braun, N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, J. Bacteriol. 173:308-314, 1991). The catalytic domain of 608 amino acids is at the N terminus. The sequence of the first 477 amino acids in the catalytic domain is related to the sequences of cellulases in family E, which includes procaryotic and eucaryotic enzymes. The sequence of the last 131 amino acids of the catalytic domain is related to sequences present in a number of cellulases from different families. The catalytic domain alone can bind to cellulose, and this binding is mediated at least in part by the C-terminal 131 amino acids. Deletion of these 131 amino acids reduces but does not eliminate activity. The catalytic domain is followed by three domains which are repeats of a 98-amino-acid sequence. The repeats are approximately 50% identical to two repeats of 95 amino acids in a chitinase from Bacillus circulans which are related to fibronectin type III repeats (T. Watanabe, K. Suzuki, K. Oyanagi, K. Ohnishi, and H. Tanaka, J. Biol. Chem. 265:15659-15665, 1990). The C-terminal domain of 101 amino acids is related to sequences, present in a number of bacterial cellulases and xylanases from different families, which form cellulose-binding domains (CBDs). It functions as a CBD when fused to a heterologous polypeptide. Cells of Escherichia coli expressing the wild-type cenB gene accumulate both native CenB and a stable proteolytic fragment of 41 kDa comprising the three repeats and the C-terminal CBD. The 41-kDa polypeptide binds to cellulose but lacks enzymatic activity.  相似文献   

11.
嗜热毛壳菌Chaetomium thermophilum CT2是一种土壤腐生菌,可产生具有重要工业生产价值的纤维素酶类。RACE-PCR获得嗜热毛壳菌纤维二糖水解酶Ⅱ(CBHⅡ)的编码基因(cbh2)。DNA序列分析表明cbh2的开放阅读框由1428个碱基组成,编码476个氨基酸。推断的氨基酸序列包含一个典型真菌纤维素酶的糖结合域(CBD)、催化域(CD)以及二者之间富含脯氨酸和羟基氨基酸的连接桥。根据氨基酸序列推算该酶分子量为53kD,属于糖苷水解酶第六家族,具有该家族催化保守区的典型特征。PCR扩增cbh2的成熟蛋白编码基因,利用基因重组的方法构建可在毕赤酵母分泌表达系统中表达纤维二糖水解酶蛋白的重组表达载体,并转化毕赤酵母得到重组子。在毕赤酵母醇氧化酶AOX1基因启动子的作用下,重组蛋白得到高效表达,小规模发酵量达1.2 mg/mL。经硫酸铵沉淀、DEAESepharose Fast flow阴离子层析等步骤纯化了该重组表达蛋白。SDS-PAGE得到重组蛋白分子量为67kD,与从嗜热毛壳菌中纯化的该酶分子量一致。该重组纤维二糖水解酶作用的最适合温度50℃,最适pH4.0,在70℃的半衰期为30min,具有较好的热稳定性。  相似文献   

12.
In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects.  相似文献   

13.
The nucleotide sequence of the Clostridium thermocellum F7 cbhA gene, coding for the cellobiohydrolase CbhA, has been determined. An open reading frame encoding a protein of 1,230 amino acids was identified. Removal of a putative signal peptide yields a mature protein of 1,203 amino acids with a molecular weight of 135,139. Sequence analysis of CbhA reveals a multidomain structure of unusual complexity consisting of an N-terminal cellulose binding domain (CBD) homologous to CBD family IV, an immunoglobulin-like β-barrel domain, a catalytic domain homologous to cellulase family E1, a duplicated domain similar to fibronectin type III (Fn3) modules, a CBD homologous to family III, a highly acidic linker region, and a C-terminal dockerin domain. The cellulosomal localization of CbhA was confirmed by Western blot analysis employing polyclonal antibodies raised against a truncated enzymatically active version of CbhA. CbhA was identified as cellulosomal subunit S3 by partial amino acid sequence analysis. Comparison of the multidomain structures indicates striking similarities between CbhA and a group of cellulases from actinomycetes. Average linkage cluster analysis suggests a coevolution of the N-terminal CBD and the catalytic domain and its spread by horizontal gene transfer among gram-positive cellulolytic bacteria.  相似文献   

14.
15.
The non-catalytic region of the Clostridium stercorarium cellulase CelZ (Avicelase I) comprises two protein segments (C and C′) grouped into different subfamilies of cellulose-binding domain (CBD) family III. The C-terminally located family IIIb domain C was identified as a true cellulose-binding domain responsible for anchoring the CelZ enzyme to cellulose. The family IIIc domain C′ immediately adjacent to the catalytic domain was unable to mediate binding to cellulose. A deletion study revealed a lack of independence of this pair of domains: almost the entire C′ domain was required to maintain the catalytic activity and the thermostability of the enzyme.  相似文献   

16.
A segment of Thermotoga maritima strain MSB8 chromosomal DNA was isolated which encodes an endo-1,4-β-D-xylanase, and the nucleotide sequence of the xylanase gene, designated xynA, was determined. With a half-life of about 40 min at 90°C at the optimal pH of 6.2, purified recombinant XynA is one of the most thermostable xylanases known. XynA is a 1059-amino-acid (?120 kDa) modular enzyme composed of an N-terminal signal peptide and five domains, in the order A1-A2-B-C1-C2. By comparison with other xylanases of family 10 of glycosyl hydrolases, the central ?340-amino-acid part (domain B) of XynA represents the catalytic domain. The N terminal ?150-amino-acid repeated domains (A1-A2) have no significant similarity to the C-terminal ?170-amino-acid repeated domains (C1-C2). Cellulose-binding studies with truncated XynA derivatives and hybrid proteins indicated that the C-terminal repeated domains mediate the binding of XynA to microcrystalline cellulose and that C2 alone can also promote cellulose binding. C1 and C2 did not share amino acid sequence similarity with any other known cellulose-binding domain (CBD) and thus are CBDS of a novel type. Structurally related protein segments which are probably also CBDs were found in other multi-domain xylanolytic enzymes. Deletion of the N-terminal repeated domains or of all the non-catalytic domains resulted In substantially reduced tbermostability while a truncated xylanase derivative lacking the C-terminal tandem repeat was as thermostable as the full-length enzyme. It is argued that the multidomain organization of some enzymes may be one of the strategies adopted by thermophiles to protect their proteins against thermal denaturation.  相似文献   

17.
The serine protease gene from a thermophilic fungus Thermoascus aurantiacus var. levisporus, was cloned, sequenced, and expressed in Pichia pastoris and the recombinant protein was characterized. The full-length cDNA of 2,592 bp contains an ORF of 1,482 bp encoding 494 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with subtilisin serine proteases. The putative enzyme contained catalytic domain with active sites formed by three residues of Aspl83, His215, and Ser384. The molecular mass of the recombinant enzyme was estimated to be 59.1 kDa after overexpression in P. pastoris. The activity of recombinant protein was 115.58 U/mg. The protease exhibited its maximal activity at 50°C and pH 8.0 and kept thermostable at 60°C, and retained 60% activity after 60 min at 70° C. The protease activity was found to be inhibited by PMSF, but not by DTT or EDTA. The enzyme has broad substrate specificity such as gelatin, casein and pure milk, and exhibiting highest activity towards casein.  相似文献   

18.
Three genes encoding two types of xylanases (STX-I and STX-II) and an acetyl xylan esterase (STX-III) from Streptomyces thermoviolaceus OPC-520 were cloned, and their DNA sequences were determined. The nucleotide sequences showed that genes stx-II and stx-III were clustered on the genome. The stx-I, stx-II, and stx-III genes encoded deduced proteins of 51, 35.2, and 34.3 kDa, respectively. STX-I and STX-II bound to both insoluble xylan and crystalline cellulose (Avicel). Alignment of the deduced amino acid sequences encoded by stx-I, stx-II, and stx-III demonstrated that the three enzymes contain two functional domains, a catalytic domain and a substrate-binding domain. The catalytic domains of STX-I and STX-II showed high sequence homology to several xylanases which belong to families F and G, respectively, and that of STX-III showed striking homology with an acetyl xylan esterase from S. lividans, nodulation proteins of Rhizobium sp., and chitin deacetylase of Mucor rouxii. In the C-terminal region of STX-I, there were three reiterated amino acid sequences starting from C-L-D, and the repeats were homologous to those found in xylanase A from S. lividans, coagulation factor G subunit alpha from the horseshoe crab, Rarobacter faecitabidus protease I, beta-1,3-glucanase from Oerskovia xanthineolytica, and the ricin B chain. However, the repeats did not show sequence similarity to any of the nine known families of cellulose-binding domains (CBDs). On the other hand, STX-II and STX-III contained identical family II CBDs in their C-terminal regions.  相似文献   

19.
Bakhrat A  Jurica MS  Stoddard BL  Raveh D 《Genetics》2004,166(2):721-728
Ho endonuclease is a LAGLIDADG homing endonuclease that initiates mating-type interconversion in yeast. Ho is encoded by a free-standing gene but shows 50% primary sequence similarity to the intein (protein-intron encoded) PI-SceI. Ho is unique among LAGLIDADG endonucleases in having a 120-residue C-terminal putative zinc finger domain. The crystal structure of PI-SceI revealed a bipartite enzyme with a protein-splicing domain (Hint) and intervening endonuclease domain. We made a homology model for Ho on the basis of the PI-SceI structure and performed mutational analysis of putative critical residues, using a mating-type switch as a bioassay for activity and GFP-fusion proteins to detect nuclear localization. We found that residues of the N-terminal sequence of the Hint domain are important for Ho activity, in particular the DNA recognition region. C-terminal residues of the Hint domain are dispensable for Ho activity; however, the C-terminal putative zinc finger domain is essential. Mutational analysis indicated that residues in Ho that are conserved relative to catalytic, active-site residues in PI-SceI and other related homing endonucleases are essential for Ho activity. Our results indicate that in addition to the conserved catalytic residues, Hint domain residues and the zinc finger domain have evolved a critical role in Ho activity.  相似文献   

20.
A hyperthermophilic -1,4 endoglucanase was identified in Pyrococcus horikoshii, a hyperthermophilic archaeon. In order to clarify the function of the protein in detail, structural and catalytic site studies were performed using protein engineering. By removing some of the C-terminal sequence of the ORF of the endoglucanase (PH1171), two types of recombinant proteins were expressed from one ORF, using Escherichia coli. One exhibited endoglucanase activity, and the other did not. An SD-like sequence was identified in the ORF of the endoglucanase. By removing the SD-like sequence without changing the amino acid sequence of the endoglucanase, one recombinant endoglucanase was prepared effectively from E. coli. From the analysis of the N- and C-terminal regions of the ORF, this endoglucanase appears to be a secreted and membrane-binding enzyme of P. horikoshii. A mutation analysis of the endoglucanase, using the synthetic substrate, indicated that Glu342 is a candidate for the active center and plays a critical role in the activity of the enzyme. Additional catalytic amino acid residues were not found. These results indicate that the catalytic residue of the enzyme is different from that of typical family 5 endoglucanase, even though it has a high homology to the endoglucanase from Acidothermus celluloliticus. The activity of the enzyme, using carboxy methylcellulose and crystalline cellulose as the substrates, was increased, but not for a synthetic low-molecular substrate when a carbohydrate-binding module of chitinase from P. furiosus was added to the C-terminal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号