首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel blue copper protein was constructed by replacing the C-terminal loop of amicyanin (Paracoccus versutus) by the homologous loop of rusticyanin. The C-terminal loop of both amicyanin and rusticyanin contains three (His, Cys, Met) of the four copper ligands. The amicyanin mutant exhibits all spectroscopic properties normally encountered for blue copper sites. The midpoint potential (369 mV) is the highest reported value for an amicyanin mutant. Cyclic voltammetry and NMR studies of the reduced form indicate that, in contrast to wild-type amicyanin and all amicyanin mutants described so far, the C-terminal histidine ligand does not protonate in the accessible pH range (pKa<4.5).  相似文献   

2.
The axial copper ligand methionine has been replaced by a glutamine in the cupredoxin amicyanin from Paracoccus versutus. Dynamic and structural characteristics of the mutant have been studied in detail using UV/Vis, EPR, NMR, cyclic voltammetry, and isomorphous metal replacement. M99Q amicyanin is a blue copper protein with significant spectral and structural similarities to the other cupredoxins umecyanin, stellacyanin, and M121Q azurin. In addition, the functional properties of M99Q amicyanin, as reflected in the electron self-exchange rate constant and midpoint potential (165 mV), have been assessed and compared to values for M121Q azurin. For the latter protein, the published midpoint potential was corrected to the much lower value of 147 mV at pH 7, I = 0.1 M. These values are very similar to the midpoint potential of stellacyanin, which naturally possesses an axial glutamine ligand and has the lowest reduction potential for a naturally occurring cupredoxin. A remarkable feature of M99Q amicyanin, in the reduced state, is the relatively high pK(a) value of 7.1 for its His96 ligand.  相似文献   

3.
A family of 12 different mixed ligand complexes of iron with cyanide and substituted 1,10-phenanthroline was prepared. The electron transfer properties of each reagent were systematically manipulated by varying the substituent(s) on the aromatic ring system and the stoichiometry of the two types of ligands in the complex. Values for the standard reduction potentials of each member of this family of electron transfer reagents were determined and spanned from 500 to 900 mV. The one-electron transfer reactions between each of these substitution-inert reagents and the high potential blue copper protein, rusticyanin, from Thiobacillus ferrooxidans were studied by stopped flow spectrophotometry under acidic conditions. For comparison with the protein results, the kinetics of electron transfer between each of these reagents and sulfatoiron were also investigated. The Marcus theory of electron transfer was successfully applied to this set of kinetic data to demonstrate that 10 of the 12 reagents had equal kinetic access to the redox center of the rusticyanin and utilized the same reaction pathway for electron transfer. The utility of these synthetic electron transfer reagents in characterizing the electron transfer properties of very high potential, redox-active metalloproteins is illustrated.  相似文献   

4.
Among the members of the copper protein superfamily, the type I enzyme rusticyanin, which is found as an electron carrier in the oxidative respiratory chain of Acidithiobacillus ferrooxidans, is the only one to have both a high redox potential and acid stability. Here we report that two forms of the rusticyanin gene (rus) are present in the genomes of some strains of A. ferrooxidans. The more common form of rus (type-A) was found to be present in all six strains studied, including those harboring only a single copy of the gene. In addition a less common form (type-B) occurred in strains harboring multiple copies of the gene. The two genes were expressed as rusticyanin isozymes with differing surface charges due to differences in their amino acid composition. Still, the copper coordination sites were completely conserved, thereby maintaining the high redox potential necessary for an electron carrier.  相似文献   

5.
Mutation of Pro94 to phenylalanine or alanine significantly alters the redox properties of the type I copper center of amicyanin. Each mutation increases the redox midpoint potential (E(m)) value by at least 140 mV and shifts the pK(a) for the pH dependence of the E(m) value to a more acidic value. Atomic resolution (0.99-1.1 A) structures of both the P94F and P94A amicyanin have been determined in the oxidized and reduced states. In each amicyanin mutant, an electron-withdrawing hydrogen bond to the copper-coordinating thiolate sulfur of Cys92 is introduced by movement of the amide nitrogens of Phe94 and Ala94 much closer to the thiolate sulfur than in wild-type amicyanin. This is the likely explanation for the much more positive E(m) values which result from each of these mutations. The observed decrease in the pK(a) value for the pH dependence of the E(m) value that is seen in the mutants seems to be correlated with steric hindrance to the rotation of the His95 copper ligand which results from the mutations. In wild-type amicyanin the His95 side chain undergoes a redox and pH-dependent conformational change which accounts for the pH dependence of the E(m) value of amicyanin. The reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart. In one of these conformations, a water molecule appears to have replaced Met98 as a copper ligand. The relevance of these structures to the electron transfer properties of P94F and P94A amicyanin are also discussed.  相似文献   

6.
J F Hall  L D Kanbi  R W Strange  S S Hasnain 《Biochemistry》1999,38(39):12675-12680
Type 1 Cu centers in cupredoxins, nitrite reductases, and multi-copper oxidases utilize the same trigonal core ligation to His-Cys-His, with a weak axial ligand generally provided by a Met sulfur. In azurin, an additional axial ligand, a carbonyl oxygen from a Gly, is present. The importance of these axial ligands and in particular the Met has been debated extensively in terms of their role in fine-tuning the redox potential, spectroscopic properties, and rack-induced or entatic state properties of the copper sites. Extensive site-directed mutagenesis of the Met ligand has been carried out in azurin, but the presence of an additional carbonyl oxygen axial ligand has made it difficult to interpret the effects of these substitutions. Here, the axial methionine ligand (Met148) in rusticyanin is replaced with Leu, Gln, Lys, and Glu to examine the effect on the redox potential, acid stability, and copper site geometry. The midpoint redox potential varies from 363 (Met148Lys) to 798 mV (Met148Leu). The acid stability of the oxidized proteins is reduced except for the Met148Gln mutant. The Gln mutant remains blue at all pH values between 2.8 and 8, and has a redox potential of 563 mV at pH 3.2. The optical and rhombic EPR properties of this mutant closely resemble those of stellacyanin, which has the lowest redox potential among single-type 1 copper proteins (185 mV). The Met148Lys mutant exhibits type 2 Cu EPR and optical spectra in this pH range. The Met148Glu mutant exhibits a type 2 Cu EPR spectrum above pH 3 and a mixture of type 1 and type 2 Cu spectra at lower pH. The Met148Leu mutant exhibits the highest redox potential ( approximately 800 mV at pH 3.2) which is similar to the values in fungal laccase and in the type 1 Cu site of ceruloplasmin where this axial ligand is also a Leu.  相似文献   

7.
A number of resonances in the 1H-NMR spectra of reduced and oxidised amicyanin from Thiobacillus versutus have been identified by one- and two-dimensional NMR techniques. The second-order electron self-exchange rate constant (8.5 x 10(4) M-1.s-1; pH = 7.4; T = 308.5 K) was determined by measuring the line broadening of six singlets in slightly oxidised solutions of the protein. A large increase in electron exchange rate is observed in the presence of ferrocyanide. The copper atom in the reactive centre of the protein appears to be coordinated by nitrogens from two histidines and sulfurs from a methionine and a cysteine. One of the ligand histidines becomes protonated at low pH [pK*a = 6.74 (+/- 0.02)], the asterisk indicating value uncorrected for the deuterium isotope effect] in reduced amicyanin. This is the first example of a non-photosynthetic blue copper protein in which a ligand histidine becomes protonated at low pH. A small pH-independent conformational rearrangement occurs upon oxidation.  相似文献   

8.
EXAFS of the type-1 copper site of rusticyanin   总被引:1,自引:0,他引:1  
Extended X-ray absorption fine structure (EXAFS) spectra at the Cu K-edge have been recorded of the oxidized and reduced form at pH 3.5 of rusticyanin, the type-1 or 'blue'-copper protein from Thiobacillus ferrooxidans. The EXAFS of oxidized rusticyanin is well simulated with models assuming a ligand set of 2 N(His) and 1 S(Cys) at 1.99 and 2.16 A, respectively. Upon reduction, the average Cu-N ligand distance increases by approx. 0.08A. For both redox states studied, the fit by the simulation is significantly improved by including a contribution of an additional sulfur ligand at approx. 2.8 A. From comparison with structural data of other blue-copper proteins, it is concluded that the copper coordination environment is relatively rigid, which may be a clue to its high redox potential.  相似文献   

9.
M Ronk  J E Shively  E A Shute  R C Blake 《Biochemistry》1991,30(39):9435-9442
Rusticyanin is a small blue copper protein isolated from Thiobacillus ferrooxidans. The amino acid sequence of the rusticyanin has been determined by the structural characterization of tryptic and endoproteinase Asp-N peptides with use of amino terminal microsequencing, fast atom bombardment mass spectrometry, and electrospray triple-quadrupole mass spectrometry techniques. Amino acid analysis, carboxy-terminal sequence analysis, and circular dichroism spectroscopy were also performed on the protein. Amino acid sequence identity among rusticyanin and six other small blue copper proteins is apparent only in the limited C-terminal region of each protein bearing three of the four putative copper ligands. A structural model of the rusticyanin is proposed where the protein is principally a beta-barrel comprised of six strands. This model is consistent with the circular dichroism data and computational predictions of the secondary structure of rusticyanin. A feature of the model is the hypothesis that Asp 73 may serve as a fourth copper ligand.  相似文献   

10.
Rusticyanin from the extremophile Thiobacillus ferrooxidans is a blue copper protein with unusually high redox potential and acid stability. We present the crystal structures of native rusticyanin and of its Cu site mutant His143Met at 1.27 and 1.10 A, respectively. The very high resolution of these structures allows a direct comparison with EXAFS data and with quantum chemical models of the oxidized and reduced forms of the proteins, based upon both isolated and embedded clusters and density functional theory (DFT) methods. We further predict the structure of the Cu(II) form of the His143Met mutant which has been experimentally inaccessible due to its very high redox potential. We also present metrical EXAFS data and quantum chemical calculations for the oxidized and reduced states of the Met148Gln mutant, this protein having the lowest redox potential of all currently characterized mutants of rusticyanin. These data offer new insights into the structural factors which affect the redox potential in this important class of proteins. Calculations successfully predict the structure and the order of redox potentials for the three proteins. The calculated redox potential of H143M ( approximately 400 mV greater than native rusticyanin) is consistent with the failure of readily available chemical oxidants to restore a Cu(II) species of this mutant. The structural and energetic effects of mutating the equatorial cysteine to serine, yet to be studied experimentally, are predicted to be considerable by our calculations.  相似文献   

11.
The unfolding process of the blue copper protein rusticyanin (Rc) as well as its dynamic and D(2)O/H(2)O exchange properties in an incipient unfolded state have been studied by heteronuclear NMR spectroscopy. Titrations of apo, Cu(I), and Cu(II)Rc with guanidinium chloride (GdmCl) show that the copper ion stabilizes the folded species and remains bound in the completely unfolded state. The oxidized state of the copper ion is more efficient than the reduced form in this respect. The long loop of Rc (where the first ligand of the copper ion is located) is one of the most mobile domains of the protein. This region has no defined secondary structure elements and is prone to exchange its amide protons. In contrast, the last loop (including a short alpha-helix) and the last beta-strand (where the other three ligands of the metal ion are located) form the most rigid domain of the protein. The results taken as a whole suggest that the first ligand detaches from the metal ion when the protein unfolds, while the other three ligands remain bound to it. The implications of these findings for the biological folding process of Rc are also discussed.  相似文献   

12.
Rusticyanin is a small blue copper protein isolated from Acidithiobacillus ferrooxidans with extreme acid stability and redox potential. The protein is thought to be a principal component in the iron respiratory electron transport chain in this microorganism, but its exact role in electron transfer remains controversial. The gene of rusticyanin was cloned then overexpressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. It was reported that Cys138, His85 and His143 were important residues for copper binding, but the significance of Cys138 was not verified so far. We constructed the mutant expression plasmids of these three residues using site-directed mutagenesis. Mutant proteins were expressed in E. coli and purified with a nickel metal affinity column. The EPR and atomic absorption spectroscopy results confirmed that Cys138 was crucial for copper binding. Removal of the sulfhydryl group of Cys138 resulted in copper loss. Mutations of His85 and His143 showed little effect on copper binding.  相似文献   

13.
In this work, we have determined the thermodynamic parameters of the reduction of four different variants of Thiobacillus versutus amicyanin by electrochemical techniques. In addition, the thermodynamic parameters were determined of the low-pH conformational change involving protonation of the C-terminal histidine ligand and the concomitant dissociation of this histidine from the Cu(I) ion. In these variants, the native C-terminal loop containing the Cys, His, and Met copper ligands has been replaced with the corresponding polypeptide segments of Pseudomonas aeruginosa azurin, Populus nigra plastocyanin, Alcaligenes faecalis S-6 pseudoazurin, and Thiobacillus ferrooxidans rusticyanin. For the reduction reaction, each loop invariably holds an entropic "memory" of the mother protein. The thermodynamics of the low-pH transition vary in a fashion that is species-dependent. When present, the memory effect again shows a large entropic component. In particular, loop elongation tends to favor the formation of the Cu(I)-His bond (hence disfavors His protonation, yielding lower pK(a) values) probably due to an increased flexibility of the loop in the reduced state. Overall, it appears that both reduction and low-pH transition are loop-responsive processes. The spacing between the ligands mostly affects the change in the conformational freedom that accompanies the reaction.  相似文献   

14.
Factors controlling the redox properties of the two conventional forms of cytochrome b559, i.e. the unstable high-potential form and the stable low-potential form, have been further investigated using PSII-enriched membranes from pea and spinach chloroplasts. The redox potential of the stable form of cytochrome b559 is pH independent both above pH 7.5 (E'm approximately +110 mV) and below pH 6.0 (E'm approximately +203 mV), but it changes with a slope of 58 mV per pH unit between these two pH values. Thus, cytochrome b559 seems to have a single ionizing group influencing its redox potential, with a higher affinity for protons in the reduced form (pK(red) = 7.5) and a lower affinity in the oxidized form (pK(ox) = 6.0); consequently, one unprotonated low-potential form (LP) and one protonated intermediate-potential form (IP). The redox potential of the high-potential form (HP) is pH-independent between pH 5.0 and 8.0, but its relative content (compared to the total amount of protein) decreases progressively above pH 7.0. This conversion to the stable LP form is interpreted as corresponding to the loss of a proton by one ionizing group, the protonation of which is essential for maintaining the unstable HP state. According to chemical modification experiments with diethylpyrocarbonate, one of the two histidine ligands of the heme seems to be the ionizing group responsible for the existence of both the protonated IP and HP forms. It is proposed that the difference between the IP and HP forms is due to the formation of an additional hydrogen bond between the protonated histidine and the protein in the HP state that stabilizes a special hydrophobic heme environment responsible for its high redox potential.  相似文献   

15.
The redox potential of the Rieske [2Fe-2S] cluster of the bc1 complex from bovine heart mitochondria was determined by cyclic voltammetry of a water-soluble fragment of the iron/sulfur protein. At the nitric-acid-treated bare glassy-carbon electrode, the fragment gave an immediate and stable quasireversible response. The midpoint potential at pH 7.2, 25 degrees C and I of 0.01 M was Em = +312 +/- 3 mV. This value corresponds within 20 mV to results of an EPR-monitored dye-mediated redox titration. With increasing ionic strength, the midpoint potential decreased linearly with square root of I up to I = 2.5 M. From the cathodic-to-anodic peak separation, the heterogeneous rate constant, k degrees, was calculated to be approximately 2 x 10(-3) cm/s at low ionic strength; the rate constant increased with increasing ionic strength. From the temperature dependence of the midpoint potential, the standard reaction entropy was calculated as delta S degrees = -155 J.K-1.mol-1. The pH dependence of the midpoint potential was followed over pH 5.5-10. Above pH 7, redox-state-dependent pK changes were observed. The slope of the curve, -120 mV/pH above pH9, indicated two deprotonations of the oxidized protein. The pKa values of the oxidized protein, obtained by curve fitting, were 7.6 and 9.2, respectively. A group with a pKa,ox of approximately 7.5 could also be observed in the optical spectrum of the oxidized protein. Redox-dependent pK values of the iron/sulfur protein are considered to be essential for semiquinone oxidation at the Qo center of the bc1 complex.  相似文献   

16.
Thiobacillus ferrooxidans is a chemolithotrophic bacterium capable of fulfilling all of its energy requirements from the oxidation of soluble ferrous sulfate. Rusticyanin is a soluble blue copper protein found in abundance in the periplasmic space of this bacterium. The one-electron transfer reaction between soluble iron and purified rusticyanin has been studied by stopped flow spectrophotometry in acidic solutions containing sulfate. Second order rate constants for the reduction of rusticyanin by Fe2+, FeHSO4+, and FeSO4(0) were 0.022, 0.73, and 2.30 M-1 s-1, respectively. The pseudo-first order rate constant for the reduction of rusticyanin exhibited substrate saturation when the concentration of the total ferrous ion was varied in solutions of limiting sulfate. This saturation behavior was quantitatively described using the values of the second order rate constants listed above and the distribution of the total ferrous ion into its water-, bisulfate-, and sulfate-coordinated forms. Second order rate constants for the oxidation of rusticyanin by Fe3+ and FeSO4+ were 0.73 and 0.26 M-1 s-1, respectively. The electron transfer reactions between iron and rusticyanin monitored in vitro were far too slow to support the hypothesis that rusticyanin is the primary oxidant of ferrous ions in the iron-dependent respiratory electron transport chain of T. ferrooxidans.  相似文献   

17.
 The reduction potentials of blue copper sites vary between 180 and about 1000 mV. It has been suggested that the reason for this variation is that the proteins constrain the distance between the copper ion and its axial ligands to different values. We have tested this suggestion by performing density functional B3LYP calculations on realistic models of the blue copper proteins, including solvent effects by the polarizable continuum method. Constraining the Cu-SMet bond length to values between 245 and 310 pm (the range encountered in crystal structures) change the reduction potential by less than 70 mV. Similarly, we have studied five typical blue copper proteins spanning the whole range of reduction potentials: stellacyanin, plastocyanin, azurin, rusticyanin, and ceruloplasmin. These studies included the methionine (or glutamine) ligand as well as the back-bone carbonyl oxygen group that is a ligand in azurin and is found at larger distances in the other proteins. The active-site models of these proteins show a variation in the reduction potential of about 140 mV, i.e., only a minor part of the range observed experimentally (800 mV). Consequently, we can conclude that the axial ligands have a small influence on the reduction potentials of the blue copper proteins. Instead, the large variation in the reduction potentials seems to arise mainly from variations in the solvent accessibility of the copper site and in the orientation of protein dipoles around the copper site. Received: 7 April 1999 / Accepted: 26 July 1999  相似文献   

18.
The study of electron transfer between the copper protein rusticyanin (RCy) and the c(4)-cytochrome CYC(41) of the acidophilic bacterium Acidithiobacillus ferrooxidans has evidenced a remarkable decrease of RCy's redox potential upon complex formation. The structure of the CYC(41) obtained at 2.2 A resolution highlighted a specific glutamate residue (E121) involved in zinc binding as potentially playing a central role in this effect, required for the electron transfer to occur. EPR and stopped-flow experiments confirmed the strong inhibitory effect of divalent cations on CYC(41):RCy complex formation. A docking analysis of the CYC(41) and RCy structure allows us to propose a detailed model for the complex-induced tuning of electron transfer in agreement with our experimental data, which could be representative of other copper proteins involved in electron transfer.  相似文献   

19.
Noncovalent weak interactions play important roles in biological systems. In particular, such interactions in the second coordination shell of metal ions in proteins may modulate the structure and reactivity of the metal ion site in functionally significant ways. Recently, ππ interactions between metal ion coordinated histidine imidazoles and aromatic amino acids have been recognized as potentially important contributors to the properties of metal ion sites. In this paper we demonstrate that in pseudoazurin (a blue copper protein) the ππ interaction between a coordinated histidine imidazole ring and the side chains of aromatic amino acids in the second coordination sphere, significantly influences the properties of the blue copper site. Electronic absorption and electron paramagnetic resonance spectra indicate that the blue copper electronic structure is perturbed, as is the redox potential, by the introduction of a second coordination shell ππ interaction. We suggest that the ππ interaction with the metal ion coordinated histidine imidazole ring modulates the electron delocalization in the active site, and that such interactions may be functionally important in refining the reactivity of blue copper sites. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Azurin contains two potential redox sites, a copper centre and, at the opposite end of the molecule, a cystine disulfide (RSSR). Intramolecular electron transfer between a pulse radiolytically produced RSSR- radical anion and the blue Cu(II) ion was studied in a series of azurins in which single-site mutations were introduced into the copper ligand sphere. In the Met121His mutant, the rate constant for intramolecular electron transfer is half that of the corresponding wild-type azurin. In the His46Gly and His117Gly mutants, a water molecule is co-ordinated to the copper ion when no external ligands are added. Both these mutants also exhibit slower intramolecular electron transfer than the corresponding wild-type azurin. However, for the His117Gly mutant in the presence of excess imidazole, an azurin-imidazole complex is formed and the intramolecular electron-transfer rate increases considerably, becoming threefold faster than that observed in the native protein. Activation parameters for all these electron-transfer processes were determined and combined with data from earlier studies on intramolecular electron transfer in wild-type and single-site-mutated azurins. A linear relationship between activation enthalpy and activation entropy was observed. These results are discussed in terms of reorganization energies, driving force and possible electron-transfer pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号