首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We measured the lengths of actin filaments formed by spontaneous polymerization of highly purified actin monomers by fluorescence microscopy after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of approximately 7 microm (2600 subunits). This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: 1) filaments formed from a wide range of highly purified actin monomer concentrations, and 2) filaments formed from 24 microM actin over a range of CapZ concentrations.  相似文献   

2.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

3.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

4.
The cortical cytoskeleton mediates a range of cellular activities such as endocytosis, cell motility, and the maintenance of cell rigidity. Traditional polymers, including actin, microtubules, and septins, contribute to the cortical cytoskeleton, but additional filament systems may also exist. In yeast cells, cortical structures called eisosomes generate specialized domains termed MCCs to cluster specific proteins at sites of membrane invaginations. Here we show that the core eisosome protein Pil1 forms linear cortical filaments in fission yeast cells and that purified Pil1 assembles into filaments in vitro. In cells, Pil1 cortical filaments are excluded from regions of cell growth and are independent of the actin and microtubule cytoskeletons. Pil1 filaments assemble slowly at the cell cortex and appear stable by time-lapse microscopy and fluorescence recovery after photobleaching. This stability does not require the cell wall, but Pil1 and the transmembrane protein Fhn1 colocalize and are interdependent for localization to cortical filaments. Increased Pil1 expression leads to cytoplasmic Pil1 rods that are stable and span the length of cylindrical fission yeast cells. We propose that Pil1 is a novel component of the yeast cytoskeleton, with implications for the role of filament assembly in the spatial organization of cells.  相似文献   

5.
The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.  相似文献   

6.
The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.  相似文献   

7.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

8.
Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because labeled microtubules and microfilaments gradually decreased, the rate of cytoskeleton disassembly was greater than the rate of cytoskeleton assembly. Hence, ooplasmic segregation was accompanied by the rapid turnover of cytoskeletal components. Co-distribution of F- and-G-actin during mid and late interphase may favor polymer-monomer interchange. We conclude that cytoskeleton reorganization during foundation of cytoplasmic domains can be conveniently studied in the live leech zygote after microinjection of labeled precursors.  相似文献   

9.
Using the squid giant axon, we analyzed biochemically the molecular organization of the axonal cytoskeleton underlying the axolemma (subaxolemmal cytoskeleton). The preparation enriched in the subaxolemmal cytoskeleton was obtained by squeezing out the central part of the axoplasm using a roller. The electrophoretic banding pattern of the subaxolemmal cytoskeleton was characterized by large amounts of two high-molecular-weight (HMW) proteins (260 and 255 kD). The alpha, beta-tubulin, actin, and some other proteins were also its major constituents. The 260-kD protein is known to play an important role in maintaining the excitability of the axolemma (Matsumoto, G., M. Ichikawa, A. Tasaki, H. Murofushi, and H. Sakai, 1983, J. Membr. Biol., 77:77-91) and was recently designated "axolinin" (Sakai, H., G. Matsumoto, and H. Murofushi, 1985, Adv. Biophys., 19:43-89). We purified axolinin and the 255-kD protein in their native forms and further characterized their biochemical properties. The purified axolinin was soluble in 0.6 M NaCl solution but insoluble in 0.1 M NaCl solution. It co-sedimented with microtubules but not with actin filaments. In low-angle rotary-shadowing electron microscopy, the axolinin molecule in 0.6 M NaCl solution looked like a straight rod approximately 105 nm in length with a globular head at one end. On the other hand, the purified 255-kD protein was soluble in both 0.1 and 0.6 M NaCl solution and co-sedimented with actin filaments but not with microtubules. The 255-kD protein molecule appeared as a characteristic horseshoe-shaped structure approximately 35 nm in diameter. Furthermore, the 255-kD protein showed no cross-reactivity to the anti-axolinin antibody. Taken together, these characteristics lead us to conclude that the subaxolemmal cytoskeleton in the squid giant axon is highly specialized, and is mainly composed of microtubules and a microtubule-associated HMW protein (axolinin), and actin filaments and an actin filament-associated HMW protein (255-kD protein).  相似文献   

10.
Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament.  相似文献   

11.
Tissues of multicellular organisms are characterised by several types of specialised cell–cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton‐associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.  相似文献   

12.
The organization of actin, tubulin, and vimentin was studied in protruding lamellae of human fibroblasts induced by the aminoglycoside antibiotic neomycin, an inhibitor of the phosphatidylinositol cycle. Neomycin stimulates the simultaneous protrusion of lamellae in all treated cells, and the lamellae remain extended for about 15–20 min, before gradually withdrawing. The pattern and distribution of actin, tubulin, and vimentin during neomycin stimulation were analyzed by fluorescence and electron microscopy. F-actin in the newly formed lamellae is localized in a marginal band at the leading edge. Tubulin is colocalized with F-actin in the marginal band, but the newly formed lamellae are initially devoid of microtubules. Over a period of 10 to 20 min after the addition of neomycin, microtubules grow into the lamellae from the adjacent cytoplasm, while the intensity of tubulin staining of the marginal band decreases. Distribution of vimentin remains unchanged in neomycin-treated cells and vimentin filaments do not enter the new protrusions. Treatment of cells with colchicine and Taxol do not inhibit neomycin-induced protrusion but protrusions are no longer localized at the ends of cell processes and occur all around the cell periphery. We conclude that actin filaments are the major component of the cytoskeleton involved in generating protrusions. Microtubules and, possibly, intermediate filaments control the pattern of protrusions by their interaction with actin filaments.  相似文献   

13.
《Biophysical journal》2022,121(12):2436-2448
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the length of single actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here, we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth-rate modulation by actin-binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning filamentous actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.  相似文献   

14.
Drees F  Pokutta S  Yamada S  Nelson WJ  Weis WI 《Cell》2005,123(5):903-915
Epithelial cell-cell junctions, organized by adhesion proteins and the underlying actin cytoskeleton, are considered to be stable structures maintaining the structural integrity of tissues. Contrary to the idea that alpha-catenin links the adhesion protein E-cadherin through beta-catenin to the actin cytoskeleton, in the accompanying paper we report that alpha-catenin does not bind simultaneously to both E-cadherin-beta-catenin and actin filaments. Here we demonstrate that alpha-catenin exists as a monomer or a homodimer with different binding properties. Monomeric alpha-catenin binds more strongly to E-cadherin-beta-catenin, whereas the dimer preferentially binds actin filaments. Different molecular conformations are associated with these different binding states, indicating that alpha-catenin is an allosteric protein. Significantly, alpha-catenin directly regulates actin-filament organization by suppressing Arp2/3-mediated actin polymerization, likely by competing with the Arp2/3 complex for binding to actin filaments. These results indicate a new role for alpha-catenin in local regulation of actin assembly and organization at sites of cadherin-mediated cell-cell adhesion.  相似文献   

15.
The assembly and organization of the three major eukaryotic cytoskeleton proteins, actin, microtubules, and intermediate filaments, are highly interdependent. Through evolution, cells have developed specialized multifunctional proteins that mediate the cross-linking of these cytoskeleton filament networks. Here we test the hypothesis that two of these filamentous proteins, F-actin and vimentin filament, can interact directly, i.e. in the absence of auxiliary proteins. Through quantitative rheological studies, we find that a mixture of vimentin/actin filament network features a significantly higher stiffness than that of networks containing only actin filaments or only vimentin filaments. Maximum inter-filament interaction occurs at a vimentin/actin molar ratio of 3 to 1. Mixed networks of actin and tailless vimentin filaments show low mechanical stiffness and much weaker inter-filament interactions. Together with the fact that cells featuring prominent vimentin and actin networks are much stiffer than their counterparts lacking an organized actin or vimentin network, these results suggest that actin and vimentin filaments can interact directly through the tail domain of vimentin and that these inter-filament interactions may contribute to the overall mechanical integrity of cells and mediate cytoskeletal cross-talk.  相似文献   

16.
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.  相似文献   

17.
Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament “branches” are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural interactions with other cytoskeletal elements. A structural and biochemical comparison of whole cells and cytoskeletons demonstrates that the former show a more inticate three-dimensional network and a more complex biochemical composition than the latter. An analysis of the time course of detergent extraction strongly suggests that the cytoskeleton forms a structural backbone with which a large number of proteins of the cytoplasmic ground substance associate in an ordered fashion to form the characteristic image of the “microtrabecular network” (J.J. Wolosewick and K.R. Porter. 1979. J. Cell Biol. 82: 114-139).  相似文献   

18.
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.

The cell wall is assembled via vesicle trafficking along cytoskeletal filaments during growth and division.  相似文献   

19.
Microtubules are components of eukaryotic cytoskeleton that are involved in the transport of various components from the nucleus to the cell periphery and back. They also act as a platform for assembly of complex molecular ensembles. Ribonucleoprotein (RNP) complexes, such as ribosomes and mRNPs, are transported over significant distances (e.g. to neuronal processes) along microtubules. The association of RNPs with microtubules and their transport along these structures are essential for compartmentalization of protein biosynthesis in cells. Microtubules greatly facilitate assembly of stress RNP granules formed by accumulation of translation machinery components during cell stress response. Microtubules are necessary for the cytoplasm-to-nucleus transport of proteins, including ribosomal proteins. At the same time, ribosomal proteins and RNA-binding proteins can influence cell mobility and cytoplasm organization by regulating microtubule dynamics. The molecular mechanisms underlying the association between the translation machinery components and microtubules have not been studied systematically; the results of such studies are mostly fragmentary. In this review, we attempt to fill this gap by summarizing and discussing the data on protein and RNA components of the translation machinery that directly interact with microtubules or microtubule motor proteins.  相似文献   

20.
BACKGROUND: The asymmetric division of cells and unequal allocation of cell contents is essential for correct development. This process of active segregation is poorly understood but in many instances has been shown to depend on the cytoskeleton. Motor proteins moving along actin filaments and microtubules are logical candidates to provide the motive force for asymmetric sorting of cell contents. The role of myosins in such processes has been suggested, but few examples of their involvement are known. RESULTS: Analysis of a Caenorhabditis elegans class VI myosin deletion mutant reveals a role for this motor protein in the segregation of cell components during spermatogenesis. Mutant spermatocytes cannot efficiently deliver mitochondria and endoplasmic reticulum/Golgi-derived fibrous-body membranous organelle complexes to budding spermatids, and fail to remove actin filaments and microtubules from the spermatids. The segregation defects are not due to a global sorting failure as nuclear inheritance is unaffected. CONCLUSIONS: C. elegans myosin VI has an important role in the unequal partitioning of both organelles and cytoskeletal components, a novel role for this class of motor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号