首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.  相似文献   

2.
CD157, the Janus of CD38 but with a unique personality   总被引:4,自引:0,他引:4  
CD157 is a pleiotropic ectoenzyme which belongs to the CD38 family and to the growing number of leukocyte surface molecules known to act independently as both receptors and enzymes. A 45-kDa surface structure with a GPI anchor, the CD157 molecule displays two distinct domains in its extracellular component. The first is implicated in the enzymic activities of the molecule and the second features adhesion/signalling properties. CD157 shares several characteristics with CD38, including a similar amino acid sequence and enzymic functions. Both molecules are involved in the metabolism of NAD(+), and the CD157 gene is synthenic on 4p15 with CD38, with which it also shares a unique genomic organization. Their conservation in phylogeny is striking evidence for their relevance in the life and death cycle of the cell.  相似文献   

3.
CD157/BST-1 is expressed on mature myeloid cells but not on their precursors in vivo. Also CD38, a homologous gene to CD157, is upregulated in promyelocytic HL-60 cells by the monocyte and granulocyte differentiation-inducing 1alpha,25dihydroxyvitamin D3 (VD3) and all-trans retinoic acid (ATRA), respectively. We have examined whether CD157 expression is upregulated when the promyeloid HL-60 and/or U937 cells are induced to differentiate into mature phenotypes in vitro. VD3 treatment irreversibly upregulated the expression of CD157 in HL-60 cells but not in U937 cells in a time- and concentration-dependent manner when analyzed by flow cytometry, immunoblotting and/or RT-PCR. Different monocyte and granulocyte lineage inducers induced CD157 expression to varying extents while the macrophage differentiation-inducing phorbol 12-myristate 13-acetate (PMA) induced its down-regulation. Time-kinetics of VD3 treatment of HL-60 cells showed that the appearance of CD157 and CD11b (a differentiation marker) antigens were not substantial up to 24 hours but increased subsequently although the appearance of CD38 became significant within 6 hours. Two-color staining of VD3-treated HL-60 cells displayed an apparently linear correlation between CD157 and CD11b expression. Dibutyryl cAMP (cAMP agonist) and forskolin (cAMP-increasing agent) augmented the VD3-dependent induction of CD157 and CD11b expression while PGE1 (cAMP-decreasing agent) inhibited it, suggesting the involvement of a cAMP-dependent mechanism in VD3-induced CD157 upregulation. Co-treatment of HL-60 cells with VD3 plus TNF-alpha or ara-C produced an additive effect on CD157 upregulation. The upregulated CD157 in the VD3-differentiated HL-60 cells was able to activate CD157-dependent tyrosine kinase signal when cross-linked with anti-CD157 antibody.  相似文献   

4.
Cyclic ADP-ribose (cADPR), a metabolite of NAD(+), is known to function as a second messenger for intracellular Ca(2+) mobilization in various vertebrate and invertebrate tissues. In this study, we isolated two Xenopus laevis cDNAs (frog cd38 and cd157 cDNAs) homologous to the one encoding the human cADPR-metabolizing enzyme CD38. Frog CD38 and CD157 are 298-amino acid proteins with 35.9 and 27.2 % identity to human CD38 and CD157, respectively. Transfection of expression vectors for frog CD38 and CD157 into COS-7 cells revealed that frog CD38 had NAD(+) glycohydrolase, ADP-ribosyl cyclase (ARC), and cADPR hydrolase activities, and that frog CD157 had no enzymatic activity under physiological conditions. In addition, when recombinant CD38 and frog brain homogenate were electrophoresed on an SDS-polyacrylamide gel, ARC of the brain homogenate migrated to the same position in the gel as that of frog CD38, suggesting that frog CD38 is the major enzyme responsible for cADPR metabolism in amphibian cells. The frog cd38 gene consists of eight exons and is ubiquitously expressed in various tissues. These findings provide evidence for the existence of the CD38-cADPR signaling system in frog cells and suggest that the CD38-cADPR signaling system is conserved during vertebrate evolution.  相似文献   

5.
Human CD38 is a multifunctional protein involved in diverse functions. As an enzyme, it is responsible for the synthesis of two Ca2+ messengers, cADPR and NAADP; as an antigen, it is involved in regulating cell adhesion, differentiation, and proliferation. Besides, CD38 is a marker of progression of HIV-1 infection and a negative prognostic marker of B-CLL. We have determined the crystal structure of the soluble extracellular domain of human CD38 to 1.9 A resolution. The enzyme's overall topology is similar to the related proteins CD157 and the Aplysia ADP-ribosyl cyclase, except with large structural changes at the two termini. The extended positively charged N terminus has lateral associations with the other CD38 molecule in the crystallographic asymmetric unit. The analysis of the CD38 substrate binding models revealed two key residues that may be critical in controlling CD38's multifunctionality of NAD hydrolysis, ADP-ribosyl cyclase, and cADPR hydrolysis activities.  相似文献   

6.
CD157/BST-1 behaves both as an ectoenzyme and signaling receptor and is an important regulator of leukocyte trafficking and ovarian cancer progression. However, the molecular interactions underpinning the role of CD157 in these processes remain obscure. The biological functions of CD157 and its partnership with members of the integrin family prompted us to assume the existence of a direct interaction between CD157 and an unknown component of the extracellular matrix. Using solid-phase binding assays and surface plasmon resonance analysis, we demonstrated that CD157 binds fibronectin with high affinity within its heparin-binding domains 1 and 2. Furthermore, we found that CD157 binds to other extracellular matrix proteins containing heparin-binding domains. Finally, we proved that the CD157-fibronectin interaction occurs with living cells, where it elicits CD157-mediated cell responses. Indeed, knockdown of CD157 in Met-5A mesothelial cells changed their morphology and cytoskeleton organization and attenuated the activation of intracellular signaling pathways triggered by fibronectin. This led to impaired cell spreading and adhesion to selected extracellular matrix proteins. Collectively, these findings indicate a central role of CD157 in cell-extracellular matrix interactions and make CD157 an attractive therapeutic target in inflammation and cancer.  相似文献   

7.
Cyclic ADP-ribose, a metabolite of NAD+, is known to modulate intracellular calcium levels and signaling in various cell types, including neural cells. The enzymes responsible for producing cyclic ADP-ribose in the cytoplasm of mammalian cells remain unknown; however, two mammalian enzymes that are capable of producing cyclic ADP-ribose extracellularly have been identified, CD38 and CD157. The present study investigated whether an ADP-ribosyl cyclase/NAD+-glycohydrolase independent of CD38 is present in brain tissue. To address this question, NAD+ metabolizing activities were accurately examined in developing and adult Cd38-/- mouse brain protein extracts and cells. Low ADP-ribosyl cyclase and NAD+-glycohydrolase activities (in the range of pmol of product formed/mg of protein/min) were detected in Cd38-/- brain at all developmental stages studied. Both activities were found to be associated with cell membranes. The activities were significantly higher in Triton X-100-treated neural cells compared with intact cells, suggesting an intracellular location of the novel cyclase. The cyclase and glycohydrolase activities were optimal at pH 6.0 and were inhibited by zinc, properties which are distinct from those of CD157. Both activities were enhanced by guanosine 5'-O-(3-thiotriphosphate), a result suggesting that the novel enzyme may be regulated by a G protein-dependent mechanism. Altogether our results indicate the presence of an intracellular membrane-bound ADP-ribosyl cyclase/NAD+-glycohydrolase distinct from CD38 and from CD157 in mouse brain. This novel enzyme, which is more active in the developing brain than in the adult tissue, may play an important role in cyclic ADP-ribose-mediated calcium signaling during brain development as well as in adult tissue.  相似文献   

8.
We report the molecular cloning and functional characterization of a novel member of the CD38 family of cyclic ADP-ribose (cADPr)-generating cyclases. We cloned a cDNA insert that encoded a 298-amino-acid-long protein (M(w) approximately 39 kDa). The predicted protein displayed 69, 61, and 58% similarity, respectively, to mouse, rat, and human CD38. Rabbit CD38 was also 28% homologous to Aplysia ADP-ribosyl cyclase and leukocyte CD157 (another ADP-ribosyl cyclase); the three cyclases shared 10 cysteine and 2 adjacent proline residues. We then transfected CD38-negative NIH3T3 cells with cDNA encoding a CD38-EGFP fusion protein. Epifluorescence microscopy showed intense EGFP fluorescence confirming CD38 expression. We finally confirmed the ADP-ribosyl cyclase activity of the expressed CD38 by measuring its ability to catalyze the cyclization of the nicotinamide adenine dinucleotide (NAD(+)) surrogate, NGD(+), to its fluorescent nonhydrolyzable derivative, cGDPr.  相似文献   

9.
CD157 is a GPI-anchored cell surface glycoprotein expressed by human peripheral blood neutrophils. Cross-linking of CD157 induces intracellular Ca2+ mobilization and re-shaping in neutrophils, thus regulating their adhesive and migratory properties. Results obtained by immunolocalization and confocal microscopy indicate that CD157 lies in close proximity to the CD11b/CD18 complex which is strongly expressed on the activated neutrophil cell membrane where it plays a predominant role in adhesion. This study analyses the physical association between CD157 and CD18 in human neutrophils by co-immunoprecipitation experiments. The anti-CD157 monoclonal antibody RF3 co-precipitates CD18, and the anti-CD18 antibody TS1/18 co-precipitates CD157 from human neutrophil lysates. These results confirm that CD157 physically interacts with CD11b/CD18 complex in human neutrophils.  相似文献   

10.
This paper reviews some of the results and the speculations presented at the Torino CD38 Meeting in June, 2006 and focused on CD38 and CD157 seen as a family of molecules acting as surface receptors of immune cells. This partisan view was adopted in the attempt to combine the enzymatic functions with what the immunologists consider key functions in different cell models. At the moment, it is unclear whether the two functions are correlated, indifferent, or independent. Here we present conclusions inferred exclusively on human cell models, namely T and B lymphocytes, dendritic cells, and granulocytes. As an extra analytical tool, we try to follow in the history of life when the enzymatic and receptorial functions were generated, mixing ontogeny, membrane localization, and cell anchorage.  相似文献   

11.
CD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)+ into cyclic ADP-ribose, NAADP+ and ADP-ribose and the role of these metabolites in multiple Ca2+ signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable. We report that human CD38 is inhibited at low micromolar concentrations by flavonoids such as luteolinidin, kuromanin and luteolin (IC50 <10 μM). Docking studies provide some clues on the mode of interaction of these molecules with the active site of CD38.  相似文献   

12.
CD38 is a multifunctional protein possessing ADP-ribosyl cyclase activity responsible for both the synthesis and the degradation of several Ca(2+)-mobilizing second messengers. Although a variety of functions have been ascribed to CD38, such as immune responses, insulin secretion, and social behavior in adults, nothing is known of its role during embryonic development when Ca(2+) signals feature prominently. Here, we report the identification and functional expression of CD38 from Xenopus laevis, a key model organism for the study of vertebrate development. We show that CD38 expression and endogenous ADP-ribosyl cyclase activity are developmentally regulated during cellular differentiation. Chemical or molecular inhibition of CD38 abolished ADP-ribosyl cyclase activity and disrupted elongation of the anterior-posterior axis and differentiation of skeletal muscle, culminating in embryonic death. Our data uncover a previously unknown role for CD38 as an essential regulator of embryonic development.  相似文献   

13.
CD157, a recently characterized leukocyte surface antigen, has recently been shown to induce tyrosine phosphorylation of a 130-kDa protein (p130) when cross-linked with its antibody (ligand). We have further investigated the detailed kinetics, behaviour and cell-type specificity of this CD157-stimulated p130 phosphorylation. We demonstrate that CD157-mediated p130 phosphorylation is ligand independent in recombinant CD157-expressing CHO, MCA102 and COS-7 cells but is ligand dependent in HL-60-differentiated monocytes (mHL-60) having enhanced CD157 expression. This p130 phosphorylation is activated only at lower temperatures (0-4 degrees C) in MCA102, COS-7 and mHL-60 cells but is temperature insensitive in CHO cells. We further demonstrate that the CHO/CD157 cell clones have approximately 22-28% slower rates of proliferation than that of a CHO/mock clone. But the MCA102 cell proliferation remains unaffected by CD157 expression. We postulate that the difference in the temperature sensitivity of p130 phosphorylation can be responsible for the discrepancy in the rates of MCA102/CD157 and CHO/CD157 cell proliferation.  相似文献   

14.
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.  相似文献   

15.
Liang F  Qi RZ  Chang CF 《FEBS letters》2001,506(3):207-210
CD157, a glycosylphosphatidylinositol-anchored protein, has previously been shown to mediate tyrosine phosphorylation of a 130 kDa protein (p130) in several cell lines. In this study, we have identified the p130 protein to be focal adhesion kinase (FAK or pp125(FAK)). FAK undergoes phosphorylation at Tyr-397 and Tyr-861 in intact MCA102 cells stably transfected with CD157 (MCA/CD157). MCA/CD157 cells, which displayed a rounded and compact cell morphology, exhibited a dispersed distribution, in contrast to a more closely associated and elongated spindle cell shape in the vector-transfected cells. MCA/CD157 cells proliferated at a rate 20-25% slower than the control cells. Our results demonstrate, for the first time, that FAK is a downstream signalling molecule of CD157.  相似文献   

16.
The lymphoid surface antigen CD38 is a NAD+-glycohydrolase that also catalyzes the transformation of NAD+ into cyclic ADP-ribose, a calcium mobilizing second messenger. In addition, ligation of CD38 by antibodies triggers signaling in lymphoid cells. Since the cytoplasmic tail of CD38 is dispensable for this latter property, we have previously proposed that CD38-mediated receptor signal transduction might be regulated by its conformational state. We have now examined the molecular changes of this protein during its interaction with NAD+ by measuring the intrinsic fluorescence of CD38. We have shown that addition of the substrate produced a dramatic decrease in the fluorescence of the catalytically active recombinant soluble ectodomain of murine CD38. Analysis of this event revealed that the catalytic cycle involves a state of the enzyme that is characterized by a low fluorescence which, upon substrate turnover, reverts to the initial high intrinsic fluorescence level. In contrast, non-hydrolyzable substrates trap CD38 in its altered low fluorescence state. Studies with the hydrophilic quencher potassium iodide revealed that the tryptophan residues that are mainly involved in the observed changes in fluorescence, are remote from the active site. Similar data were also obtained with human CD38, indicating that studies of intrinsic fluorescence will be useful in monitoring the transconformation of CD38 from different species. Together, these data demonstrate that CD38 undergoes a reversible conformational change after substrate binding, and suggest a mechanism by which this change could alter interactions with different cell-surface partners.  相似文献   

17.
CD38 is a novel multifunctional protein that serves not only as an antigen but also as an enzyme. It catalyzes the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two structurally and functionally distinct Ca(2+) messengers targeting, respectively, the endoplasmic reticulum and lysosomal Ca(2+) stores. The protein has recently been crystallized and its three-dimensional structure solved to a resolution of 1.9 A. The crystal structure of a binary complex reveals critical interactions between residues at the active site and a bound substrate, providing mechanistic insights to its novel multi-functional catalysis. This article reviews the current advances in the understanding of the structural determinants that control the multiple enzymatic reactions catalyzed by CD38.  相似文献   

18.
The hyaluronan receptor, CD44   总被引:12,自引:0,他引:12  
CD44 is a widely expressed cell surface hyaluronan receptor which plays a key role in mediating cell migration. A number of recent papers demonstrating an interplay between CD44 and matrix metalloproteinases (MMPs) have shed important insights into the molecular mechanisms underlying these events. This has important implication for understanding how mis-regulation of CD44 can contribute to disease pathologies.  相似文献   

19.
BACKGROUND: We and others have shown a critical role for CD34+ CD38- cells in hematopoietic recovery after autologous stem cell transplantation (ASCT), in particular for platelet reconstitution. Thus a routine assessment of CD34+ CD38- cells in freezing-thawing procedures for autografting could represent an important tool for predicting poor engraftment. METHODS: To compare the impact of cryopreservation on CD34+ CD38+ and CD34+ CD38- hematopoietic stem cell subsets, 193 autograft products collected in 84 patients with malignancies were assessed before controlled-rate cryopreservation in 10% DMSO and after thawing for autografting. RESULTS: Cell counts after thawing were significantly different from the pre-freezing counts for total CD34+ (P<0.0001) and CD34+ CD38+ (P<0.0001) cells, but not for CD34+ CD38- cells (P=0.252). Median losses for CD34+, CD34+ CD38+ and CD34+ CD38- cells were, respectively, 11.8%, 11.4% and 0.0%. The magnitude of fresh/post-thawing percentage cell variation was significantly different when comparing between the CD34+ CD38+ and CD34+ CD38- cell subsets (P<0.001). Moreover, CD34+ CD38- cells exhibited recovery values > or =100% in 85/160 graft products, compared with 51/193 in CD34+ CD38+ cells (P<0.0001). Also, recovery values > or =90% were significantly better in the CD34+ CD38- (98/160 grafts) than in the CD34+ CD38+ subsets (89/193 grafts) (P<0.01). DISCUSSION: In this work we have demonstrated that CD34+ cells that do not express the CD38 Ag show a significantly better resistance to cryopreservation. This could represent another example of the particular ability of less committed progenitor cells to overcome environmental injuries. Moreover, we consider routine assessment of CD34+ CD38- cells before freezing as clinically relevant, but post-thawing controls may be avoided because of their good resistance to freezing.  相似文献   

20.
Cyclic ADP-ribose is an important calcium mobilizing metabolite produced by the ADP-ribosyl cyclase (cyclases) family of enzymes. Three evolutionarily conserved ADP-ribosyl cyclase superfamily members have been identified, one from the invertebrate Aplysia californica and two from mammalian tissues, CD38 and CD157. CD38 regulates calcium signaling in a number of cell types, and it was recently shown that cyclic ADP-ribose produced by CD38 modulates calcium mobilization induced upon chemokine receptor engagement. Excitingly, because immunocytes deficient in CD38 are unable to migrate to inflammatory sites in vivo, this enzyme has now become an attractive target for drug development. To rationally design inhibitors it is critical to understand the mechanism(s) by which CD38 catalyzes the transformation of its substrate NAD+ into cyclic ADP-ribose. Likewise, it is necessary to identify the CD38 substrate-binding site. Importantly, significant progress has been made in these two areas and much is now known about the structure and enzymology of CD38 and the other ADP-ribosyl cyclase superfamily members. In this review, we will outline the critical data demonstrating a role for CD38 in regulating calcium mobilization in mammalian cells. We will also describe the crystallographic data and site-directed mutagenesis studies that have helped to elucidate the CD38 structure and the identification of its active site and key catalytic residues. Finally, we will address the important advances in our understanding of the kinetic and molecular mechanisms that control cyclic ADP-ribose production by CD38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号