首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex physiological and molecular processes underlying root gravitropism   总被引:8,自引:0,他引:8  
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.  相似文献   

2.
Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.  相似文献   

3.
The roots of rice seedlings, growing in artificial pond water, exhibit robust gravitropic curvature when placed perpendicular to the vector of gravity. To determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best accounts for gravity sensing in rice roots, we changed the physical properties of the external medium with impermeant solutes and examined the effect on gravitropism. As the density of the external medium is increased, the rate of gravitropic curvature decreases. The decrease in the rate of gravicurvature cannot be attributed to an inhibition of growth, since rice roots grown in 100 Osm/m3 (0.248 MPa) solutions of different densities all support the same root growth rate but inhibit gravicurvature increasingly with increasing density. By contrast, the sedimentation rate of amyloplasts in the columella cells is unaffected by the external density. These results are consistent with the gravitational pressure theory of gravity sensing, but cannot be explained by the statolith theory.  相似文献   

4.
Some characteristics of the gravity sensing mechanism in maize root caps were investigated using a bioelectric current as an indicator of gravity sensing. This technique involves the measurement of a change in the current density which arises at the columella region coincidently with the presentation time. Two inhibitors of auxin transport, triiodobenzoic acid and naphthylphthalamic acid, blocked gravitropic curvature but not the change in current density. Two inhibitors of calmodulin activity, compound 48/80 and calmidazolium, blocked both curvature and gravity-induced current. The results suggest that auxin transport is not a component of gravity sensing in the root cap. By contrast, the results suggest that calmodulin plays an intrinsic role in gravity sensing.  相似文献   

5.
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.  相似文献   

6.
When primary root apical tissues of Arabidopsis thaliana were irradiated by heavy-ion microbeams with 120 microm diameter, strong inhibition of root elongation and curvature were observed at the root tip. Irradiation of the cells that become the lower part of the root cap after gravistimulation showed strong inhibition of root curvature, whereas irradiation of the cells that become the upper part of the root cap after gravistimulation did not show severe damage in either root curvature or root growth. Further analysis using smaller area microbeams with 40 microm diameter indicated that the greatest inhibition of curvature occurred at the root tip and the next greatest inhibition occurred in the cells in the lower part of the root cap. These results indicate not only that the root tip and columella cells are the most sensitive sites for root gravity, but also that signalling of root gravity would go through the lower part of the cap cells after perception.  相似文献   

7.
The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.  相似文献   

8.
The sedimentation of starch-filled plastids is thought to be the primary mechanism by which gravity is perceived in roots. Following gravity perception, auxin redistribution toward the lower flank of roots, initiated in the root cap, is believed to play a role in regulation of the gravity response. Amyloplast sedimentation and auxin flux, however, have never been directly linked. The overall aim of this study was to investigate the relationship among plastid sedimentation, gravitropism and auxin flux. Our data show that pgm-1 roots respond to gravity at one-third the rate of wild-type (WT) roots. Maintaining the root tip at a constant angle using image analysis coupled to a rotating stage resulted in a constant rate of response regardless of the angle of tip orientation in pgm-1 mutants, in contrast to the responses of WT and pin3-1 mutants, which showed increasing response rates as the tip was constrained at greater angles. To indirectly visualize auxin flux following reorientation, we generated a pgm-1 mutant line expressing the DR5::GFPm reporter gene. In WT roots a GFP gradient was observed with a maximum along the lower flank, whereas pgm-1 roots formed a GFP maximum in the central columella but lacked any observable gradient up to 6 h following reorientation. Our study suggests that the relationship between root cap angle and gravitropic response depends upon plastid sedimentation-based gravity sensing and supports the idea that there are multiple, overlapping sensory response networks involved in gravitropism.  相似文献   

9.
The geotropic development in roots of Norway spruce [(Picea abies (L.)] H. Karst, has been followed by light and electron microscopy and compared with the movement of cell organelles (statoliths) in the root cap cells. The geotropic curvature develops in two phases: (a) an initial curvature in the root cap region, which results in an asymmetry in the extreme root tip and which appears after about 3 h stimulation in the horizontal position; and (b) the geotropic curvature in the basal parts of the root tip, which after 8 h is distributed over the entire elongation zone. A graphic extrapolation, based on measurements of the root curvatures after various stimulation periods, indicates a presentation time in the range of 8 to 10 min. The root anatomy and ultrastructure have been examined in detail in order to obtain information as to which organelles may act as gravity receptors. The root cap consists of a central core (columella) distinct from the peripheral part. The core contains three to four rows of parenchymatic cells each consisting of 15 to 18 storeys of statocyte cells with possibly mobile cell organelles. Amyloplasts and nuclei have been found to be mobile in the root cap cells, and the movement of both types of organelles has been followed after inversion of the seedlings and stimulation in the horizontal position for various periods of time at 4°C and 21°C. Three-dimensional reconstructions of spruce root cap cells based on serial sectioning and electron microscopy have been performed. These demonstrate that the endoplasmic reticulum (ER)-system and the vacuoles occupy a considerable part of the statocyte cell. For this reason the space available for free movement of single statolith particles is highly restricted.  相似文献   

10.
Gravity signal transduction in primary roots   总被引:8,自引:0,他引:8  
AIMS: The molecular mechanisms that correlate with gravity perception and signal transduction in the tip of angiosperm primary roots are discussed. SCOPE: Gravity provides a cue for downward orientation of plant roots, allowing anchorage of the plant and uptake of the water and nutrients needed for growth and development. Root gravitropism involves a succession of physiological steps: gravity perception and signal transduction (mainly mediated by the columella cells of the root cap); signal transmission to the elongation zone; and curvature response. Interesting new insights into gravity perception and signal transduction within the root tip have accumulated recently by use of a wide range of experimental approaches in physiology, biochemistry, genetics, genomics, proteomics and cell biology. The data suggest a network of signal transduction pathways leading to a lateral redistribution of auxin across the root cap and a possible involvement of cytokinin in initial phases of gravicurvature. CONCLUSION: These new discoveries illustrate the complexity of a highly redundant gravity-signalling process in roots, and help to elucidate the global mechanisms that govern auxin transport and morphogenetic regulation in roots.  相似文献   

11.
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.  相似文献   

12.
Although the rootcap is required for gravitropic sensing, various classical and contemporary data raise the question of whether additional sensing occurs away from the cap in roots. Roots of Equisetum hyemale L. (horsetail) were examined by light and electron microscopy to determine which cell components were distributed with respect to gravity both in and away from the rootcap. Adventitious roots from stem cuttings were gravitropic in a vertical orientation or if reoriented to the horizontal. Obvious amyloplast sedimentation was found in vertical and in reoriented roots 1) in cells in the center of the rootcap and 2) in young, elongating cortical cells located in two to three layers outside the endodermis. These cortical amyloplasts were smaller than cap amyloplasts and, unlike central cap amyloplasts, were occasionally found in the top of the cell. The nucleus was also sedimented on top of the amyloplasts in both cell types, both in vertical and in reoriented roots. Sedimentation of both organelles ceased as cortical cells elongated further or as cap cells became peripheral in location. In both cell types with sedimentation, endoplasmic reticulum was located in the cell periphery, but showed no obvious enrichment near the lower part of the cell in vertical roots. This is the first modern report of sedimentation away from the cap in roots, and it provides structural evidence that gravitropic sensing may not be confined to the cap in all roots.  相似文献   

13.
Root gravitropism: a complex response to a simple stimulus?   总被引:4,自引:0,他引:4  
Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.  相似文献   

14.
In higher plants, shoots and roots show negative and positive gravitropism, respectively. Data from surgical ablation experiments and analysis of starch deficient mutants have led to the suggestion that columella cells in the root cap function as gravity perception cells. On the other hand, endodermal cells are believed to be the statocytes (that is, gravity perceiving cells) of shoots. Statocytes in shoots and roots commonly contain amyloplasts which sediment under gravity. Through genetic research with Arabidopsis shoot gravitropism mutants, sgr1/scr and sgr7/shr, it was determined that endodermal cells are essential for shoot gravitropism. Moreover, some starch biosynthesis genes and EAL1 are important for the formation and maturation of amyloplasts in shoot endodermis. Thus, amyloplasts in the shoot endodermis would function as statoliths, just as in roots. The study of the sgr2 and zig/sgr4 mutants provides new insights into the early steps of shoot gravitropism, which still remains unclear. SGR2 and ZIG/SGR4 genes encode a phospholipase-like and a v-SNARE protein, respectively. Moreover, these genes are involved in vacuolar formation or function. Thus, the vacuole must play an important role in amyloplast sedimentation because the sgr2 and zig/sgr4 mutants display abnormal amyloplast sedimentation.  相似文献   

15.
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.  相似文献   

16.
In flowering plants, gravity perception appears to involve the sedimentation of starch-filled plastids, called amyloplasts, within specialized cells (the statocytes) of shoots (endodermal cells) and roots (columella cells). Unfortunately, how the physical information derived from amyloplast sedimentation is converted into a biochemical signal that promotes organ gravitropic curvature remains largely unknown. Recent results suggest an involvement of the Translocon of the Outer Envelope of (Chloro) plastids (TOC) in early phases of gravity signal transduction within the statocytes. This review summarizes our current knowledge of the molecular mechanisms that govern gravity signal transduction in flowering plants and summarizes models that attempt to explain the contribution of TOC proteins in this important behavioral plant growth response to its mechanical environment.Key words: gravitropism, root, amyloplast, TOC complex, TOC132, TOC75  相似文献   

17.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

18.
Primary roots of Phaseolus vulgaris (Fabaceae) are positively geotropic, while lateral roots are not responsive to gravity In order to elucidate the structural basis for this differential georesponse, we have performed a qualitative and quantitative analysis of the ultrastructure of columella cells of primary and lateral roots of P. vulgaris. Root systems were fixed in situ so as not to disturb the ultrastructure of the columella cells. The columellas of primary roots are more extensive than those of lateral roots. The volumes of columella cells of primary roots are approximately twice those of columella cells of lateral roots. However, columella cells of primary roots contain greater absolute volumes and numbers of all cellular components examined than do columella cells of lateral roots. Also, the relative volumes of cellular components in columella cells of primary and lateral roots are statistically indistinguishable. The endoplasmic reticulum is sparse and distributed randomly in both types of columella cells. Both types of columella cells contain numerous sedimented amyloplasts, none of which contact the cell wall or form complexes with other cellular organelles. Therefore, positive geotropism by roots must be due to a factor(s) other than the presence of sedimented amyloplasts alone. Furthermore, it is unlikely that amyloplasts and plasmodesmata form a multi-valve system that controls the movement of growth regulating substances through the root cap.  相似文献   

19.
Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud.were evaluated by light and electron microscopy to determinethe distribution of organelle sedimentation towards gravity.Roots of Limnobium are strongly gravitropic. The rootcap consistsof only two layers of cells. Although small amyloplasts arepresent in the central cap cells, no sedimentation of any organelle,including amyloplasts, was found. In contrast, both amyloplastsand nuclei sediment consistently and completely in cells ofthe elongation zone. Sedimentation occurs in one cell layerof the cortex just outside the endodermis. Sedimentation ofboth amyloplasts and nuclei begins in cells that are in theirinitial stages of elongation and persists at least to the levelof the root where root hairs emerge. This is the first modernreport of the presence of sedimentation away from, but not in,the rootcap. It shows that sedimentation in the rootcap is notnecessary for gravitropic sensing in at least one angiosperm.If amyloplast sedimentation is responsible for gravitropic sensing,then the site of sensing in Limnobium roots is the elongationzone and not the rootcap. These data do not necessarily conflictwith the hypothesis that sensing occurs in the cap in otherroots, since Limnobium roots are exceptional in rootcap originand structure, as well as in the distribution of organelle sedimentation.Similarly, if nuclear sedimentation is involved in gravitropicsensing, then nuclear mass would function in addition to, notinstead of, that of amyloplasts.Copyright 1994, 1999 AcademicPress Limnobium spongia, gravitropism, roots, sedimentation, cortex  相似文献   

20.
The root cap is a universal feature of angiosperm, gymnosperm, and pteridophyte roots. Besides providing protection against abrasive damage to the root tip, the root cap is also involved in the simultaneous perception of a number of signals – pressure, moisture, gravity, and perhaps others – that modulate growth in the main body of the root. These signals, which originate in the external environment, are transduced by the cap and are then transported from the cap to the root. Root gravitropism is one much studied response to an external signal. In the present paper, consideration is given to the structure of the root cap and, in particular, to how the meristematic initial cells of both the central cap columella and the lateral portion of the cap which surrounds the columella are organized in relation to the production of new cells. The subsequent differentiation and development of these cells is associated with their displacement through the cap and their eventual release, as “border cells”, from the cap periphery. Mutations, particularly in Arabidopsis, are increasingly playing a part in defining not only the pattern of genetic activity within different cells of the cap but also in revealing how the corresponding wild-type proteins relate to the range of functions of the cap. Notable in this respect have been analyses of the early events of root gravitropism. The ability to image auxin and auxin permeases within the cap and elsewhere in the root has also extended our understanding of this growth response. Images of auxin distribution may, in addition, help extend ideas concerning the positional controls of cell division and cell differentiation within the cap. However, firm information relating to these controls is scarce, though there are intriguing suggestions of some kind of physiological link between the border cells surrounding the cap and mitotic activity in the cap meristem. Open questions concern the structure and functional interrelationships between the root and the cap which surmounts it, and also the means by which the cap transduces the environmental signals that are of critical importance for the growth of the individual roots, and collectively for the shaping of the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号