首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study is to introduce the fundamental thermodynamic principles of isochoric (constant volume) cryopreservation for low temperature preservation of biological materials. Traditionally, cryopreservation is performed in an isobaric process (constant pressure) at 1 atm, because this is our natural environment and it is most convenient experimentally. More than half a century of studies on cryopreservation shows that the major mechanism of damage during isobaric cryopreservation is the increase in intracellular ionic concentration during freezing, which presumably causes chemical damage to the components of cells. Cryoprotectants as well as hyperbaric pressures have been developed as methods to reduce the extent of chemical damage during freezing. The theoretical studies in this paper show that in isochoric cryopreservation, the increase in solution concentration during freezing is lower at each temperature by almost an order of magnitude from that in isobaric cryopreservation. This suggests that isochoric cryopreservation could be a preferential alternative to isobaric cryopreservation. The technology for isochoric cryopreservation is very simple; freezing in a constant volume chamber. Using a simple isochoric cryopreservation device, we confirm the theoretical thermodynamic predictions.  相似文献   

2.
3.
4.
The energy balance equation applicable to all living organisms was used as a framework on which to construct a critical review of some of the more controversial aspects of the obesity problem. The equation matches energy intake against all the known forms of work that the body does in utilizing that energy, including external and internal work and the work of adipose tissue synthesis (stored energy). Equations representing everyday living conditions, resting, fasting and basal conditions were constructed. The equation applicable to everyday living (working, non-fasting) was used to develop a set of model paradigms to illustrate some of the devices that can be invoked to decrease expenditure and conserve energy. These served as models of how obesity can arise in the absence of calorie overconsumption. The same equation was then used to create a set of opposite paradigms showing how obesity can be prevented by increasing expenditure to waste energy and stabilize body weight when challenged by hyperphagia. In order to see caloric intake and the various work terms in their proper quantitative relationships it was necessary to assign numerical values to the equation. These were selected from published reports of caloric values representative of a non-obese adult of average size engaged in a typical white collar occupation. It was then easy to adjust these assigned values commensurate with the objectives described in the preceding paragraph. Since obesity research is hampered by a confusing array of metabolic interactions it was essential to alter only one of the energy terms at a time, excluding all metabolic interactions except for those unavoidable ones dictated by the laws of thermodynamics. Only in this way could we see the body's multiple energy forms in clear perspective with regard to their real quantitative significance in the energy balance sheet and their potential impact on body weight. Creating these models gave us the added advantage of enabling us better to evaluate the scientific literature because the data we generated, although theoretical, served as excellent standards against which to compare the real data that have emanated from research laboratories.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Intramembrane proteases hydrolyze peptide bonds within the membrane as a signaling paradigm universal to all life forms and with implications in disease. Deciphering the architectural strategies supporting intramembrane proteolysis is an essential but unattained goal. We integrated new, quantitative and high-throughput thermal light-scattering technology, reversible equilibrium unfolding and refolding and quantitative protease assays to interrogate rhomboid architecture with 151 purified variants. Rhomboid proteases maintain low intrinsic thermodynamic stability (ΔG = 2.1-4.5 kcal mol(-1)) resulting from a multitude of generally weak transmembrane packing interactions, making them highly responsive to their environment. Stability is consolidated by two buried glycines and several packing leucines, with a few multifaceted hydrogen bonds strategically deployed to two peripheral regions. Opposite these regions lie transmembrane segment 5 and connected loops that are notably exempt of structural responsibility, suggesting intramembrane proteolysis involves considerable but localized protein dynamics. Our analyses provide a comprehensive 'heat map' of the physiochemical anatomy underlying membrane-immersed enzyme function at, what is to our knowledge, unprecedented resolution.  相似文献   

6.
The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experiment results agree reasonably well with the phenomenon of DNA reentrant condensation. This phenomenon is known to cause DNA condensation in the presence of tri- or tetra-valent counterions. For divalent counterions, the viral capsid confinement strongly suppresses DNA configurational entropy, therefore the correlation between divalent counterions is strongly enhanced causing similar effect. Computational studies also agree well with theoretical calculations.  相似文献   

7.
8.
In chromatography, macromolecules do not adsorb in the traditional sense of the word but bind to ligands that are covalently bonded to the surface of the porous bead. Therefore, the adsorption must be modelled as a process where protein molecules bind to the immobilised ligands. The paper discusses the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model. In the traditional adsorption models, the standard state Gibbs energy change of adsorption does not depend level of occupancy, but when it depends on the level of occupancy it gives rise to an adsorptive behaviour known as cooperativity. The binding of oxygen to haemoglobin is a well-known example from biology but it is also observed in chromatography due to protein-protein interactions. Retention measurements on beta-lactoglobulin A demonstrate this. A discussion of salt effects on hydrophobic interactions in precipitation and chromatography of proteins concludes the paper.  相似文献   

9.
Alphaviruses are a group of small, enveloped viruses which are widely distributed on all continents. In infected cells, alphaviruses display remarkable specificity in RNA packaging by encapsidating only their genomic RNA while avoiding packaging of the more abundant viral subgenomic (SG), cellular messenger and transfer RNAs into released virions. In this work, we demonstrate that in spite of evolution in geographically isolated areas and accumulation of considerable diversity in the nonstructural and structural genes, many alphaviruses belonging to different serocomplexes harbor RNA packaging signals (PSs) which contain the same structural and functional elements. Their characteristic features are as follows. (i) Sindbis, eastern, western, and Venezuelan equine encephalitis and most likely many other alphaviruses, except those belonging to the Semliki Forest virus (SFV) clade, have PSs which can be recognized by the capsid proteins of heterologous alphaviruses. (ii) The PS consists of 4 to 6 stem-loop RNA structures bearing conserved GGG sequences located at the base of the loop. These short motifs are integral elements of the PS and can function even in the artificially designed PS. (iii) Mutagenesis of the entire PS or simply the GGG sequences has strong negative effects on viral genome packaging and leads to release of viral particles containing mostly SG RNAs. (iv) Packaging of RNA appears to be determined to some extent by the number of GGG-containing stem-loops, and more than one stem-loop is required for efficient RNA encapsidation. (v) Viruses of the SFV clade are the exception to the general rule. They contain PSs in the nsP2 gene, but their capsid protein retains the ability to use the nsP1-specific PS of other alphaviruses. These new discoveries regarding alphavirus PS structure and function provide an opportunity for the development of virus variants, which are irreversibly attenuated in terms of production of infectious virus but release high levels of genome-free virions.  相似文献   

10.
11.
Structural principles of actin-binding proteins   总被引:7,自引:0,他引:7  
  相似文献   

12.
Intramembrane proteases are present in most organisms, and are used by cells to send signal across membranes, to activate growth factors, and to accomplish many other tasks that are beyond the capability of their soluble cousins. These enzymes specialize in cleaving peptide bonds that are normally embedded in cell membranes. They contain multiple membrane-spanning segments, and their catalytic residues are often found within these hydrophobic domains. In the past year, a number of important papers have been published that began to address the structural features of these membrane proteins by X-ray crystallography, electron microscopy, and biochemical methods, including the first report of an intramembrane protease crystal structure, that of Escherichia coli GlpG. Taken together, these studies started to reveal patterns of how intramembrane proteases are constructed, how waters are supplied to the membrane-embedded active site, and how membrane protein substrates interact with them.  相似文献   

13.
14.
The 3'-end region of the genomic RNA of brome mosaic virus forms a tRNA-like structure that is critical for its replication. Previous studies have shown that in this region, a stem-loop structure, called SLC, is necessary and sufficient for the binding of the RNA replicase, and for RNA replication. Recently, we determined the high-resolution NMR structure of SLC, which demonstrated that a 5'-AUA-3' triloop region is an important structural element for the enzymatic recognition. We proposed that the 5'-adenine of the triloop, which is rigidly fixed ("clamped") to the stem, is a key recognition element for the replicase. To elucidate the role of this "clamped base motif" for the enzymatic recognition, we have now investigated the solution conformations of several stem-loop molecules with mutant triloops, 5'-UUA-3', 5'-GUA-3', 5'-CUA-3' and 5'-UUU-3', that destroy the enzymatic recognition. For the GUA and UUA mutants, we have obtained high-resolution solution structures using 2D NMR. All four mutants have very similar thermodynamic stabilities, and all have the same secondary structures, a triloop with a five base-paired stem helix. In addition, they have quite similar sugar puckering patterns in the triloop region. The NMR structures of the GUA and UUA show that the 5' nucleotide of the triloop (G6 in GUA or U6 in UUA) lacks the strong interactions that hold its base in a fixed position. In particular, the U6 of UUA is found in two different conformations. Neither of these two mutants has the clamped base motif that was observed in the wild-type. While UUA also shows global change in the overall triloop conformation, GUA shows a very similar triloop conformation to the wild-type except for the lack of this motif. The absence of the clamped base motif is the only common structural difference between these two mutants and the wild-type. These results clearly indicate that the loss of function of the UUA and GUA mutants comes mainly from the destruction of a small key recognition motif rather than from global changes in their triloop conformations. Based on this study, we conclude that the key structural motif in the triloop recognized by the replicase is a solution-exposed, 5'-adenine base in the triloop that is clamped to the stem helix, which is called a clamped adenine motif.  相似文献   

15.
Bergerac-type chimeras of spectrin SH3 were designed by extending a β-hairpin by eight amino acids so that the extension protruded from the domain body like a “nose” being exposed to the solvent. A calorimetric study of several Bergerac-SH3 variants was carried out over a wide range of pH values and protein concentrations and the three-dimensional structure of one of them, SHH, was determined. X-ray studies confirmed that the nose had a well defined β-structure whilst the chimera formed a stable tetramer within the crystal unit because of four tightly packed noses. In the pH range of 4–7 the heat-induced unfolding of some chimeras was complex and concentration dependent, whilst at pH values below 3.5, low protein concentrations of all the chimeras studied, including SHH, seemed to obey a monomolecular two-state unfolding model. The best set of data was obtained for the SHA variant, the unfolding heat effects of which were systematically higher than those of the WT protein (about 16.4 kJ/mol at 323 K), which may be close to the upper limit of the enthalpy gain due to 10 residue β-hairpin folding. At the same time, the chimeras with high nose stability, which, like SHH, have a hydrophobic (IVY) cluster on their surface, showed a lower apparent unfolding heat effect, much closer to that of the WT protein. The possible reasons for this difference are discussed.  相似文献   

16.
17.
It is theoretically analysed whether the structural design of ATP-producing pathways, in particular the design of glycolysis, may be explained by optimization principles. On the basis of kinetic and thermodynamic principles conclusions are derived concerning the stoichiometry of these pathways in states of high ATP production rates. One of the extensions to previous investigations is that the concentrations of the adenine nucleotides are taken into account as variable quantities. This necessitates the consideration of an interaction of the ATP-producing system I with an external ATP-consuming system II. A great variety of pathways is studied which differ in the number and location of ATP-consuming reactions, ATP-producing reactions and reactions involving inorganic phosphate. The corresponding number of possible pathways may be calculated in an explicit manner as a function of the number of those reactions which do not couple to ATP or inorganic phosphate. The kinetics of the individual reactions are described by linear or bilinear functions of reactant concentrations and all rate equations are expressed in terms of equilibrium constants and characteristic times. A thermodynamical analysis of the two coupled systems yields upper and lower limits for the concentration of ATP and an explicit expression for the maximal difference between the number of ATP-producing and ATP-consuming reactions of system I. The following results of the optimization are obtained. (i) The ATP production rate always increases if the ATP-producing reactions as well as those reactions characterized by an uptake of inorganic phosphate are shifted as far as possible towards the end of system I. (ii) Explicit conditions for the optimal location of the ATP-consuming reactions are presented. The results are discussed in the context of characteristic times as well as in terms of enzyme kinetic parameters. (iii) For two sets of characteristic times the resulting stoichiometries and their corresponding steady-state fluxes are investigated in detail. One of these stoichiometries shows a close correspondence to contemporary standard glycolysis. (iv) It is shown that most possible pathways result in a very low steady-state flux, that is, the optimal stoichiometry is characterized by a significant selective advantage. (v) The standard free energy profile of a pathway with an optimal stoichiometry is discussed. It differs significantly from the free energy profiles of nonoptimized pathways.  相似文献   

18.
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.  相似文献   

19.
The packaging signal present in influenza viral RNA molecules is shown not to constitute a separate structural element, but to reside within the 5'-bulged promoter structure, as caused by the central unpaired residue A10 in its 5' branch. Upon insertion of two uridine residues in the 3' branch opposite A10, the minus-strand viral RNA (vRNA) promoter is converted into a 3'-bulged structure, whereas the plus-strand cRNA promoter instead adopts the 5'-bulged conformation. In this promoter variant it is exclusively the cRNA that is found packaged in the progeny virions. Upon insertion of only a single uridine nucleotide opposite 5'A10, the two debulged structures of the vRNA and cRNA promoters are rendered identical, and both vRNA and cRNA molecules are packaged indiscriminately, in a 1:1 ratio, but at lower rates. We propose that the binding interactions of viral polymerase with either of the two differently bulged vRNA and cRNA promoter structures result in two different conformations of the enzyme protein. Only the 5' bulged RNA-associated polymerase conformation appears to be recognized for nuclear export, which depends on nuclear matrix protein M1 and nonstructural protein NS2. And the respective wild-type vRNP- or insertion mutant cRNP complex is observed to enter the cytoplasm and hence is included in the viral encapsidation process, which takes place at the plasma membrane.  相似文献   

20.
In a previous communication (Kindt et al., 2001) we reported preliminary results of Brownian dynamics simulation and analytical theory which address the packaging and ejection forces involving DNA in bacteriophage capsids. In the present work we provide a systematic formulation of the underlying theory, featuring the energetic and structural aspects of the strongly confined DNA. The free energy of the DNA chain is expressed as a sum of contributions from its encapsidated and released portions, each expressed as a sum of bending and interstrand energies but subjected to different boundary conditions. The equilibrium structure and energy of the capsid-confined and free chain portions are determined, for each ejected length, by variational minimization of the free energy with respect to their shape profiles and interaxial spacings. Numerical results are derived for a model system mimicking the lambda-phage. We find that the fully encapsidated genome is highly compressed and strongly bent, forming a spool-like condensate, storing enormous elastic energy. The elastic stress is rapidly released during the first stage of DNA injection, indicating the large force (tens of pico Newtons) needed to complete the (inverse) loading process. The second injection stage sets in when approximately 1/3 of the genome has been released, and the interaxial distance has nearly reached its equilibrium value (corresponding to that of a relaxed torus in solution); concomitantly the encapsidated genome begins a gradual morphological transformation from a spool to a torus. We also calculate the loading force, the average pressure on the capsid's walls, and the anisotropic pressure profile within the capsid. The results are interpreted in terms of the (competing) bending and interaction components of the packing energy, and are shown to be in good agreement with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号