首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Germline transformation of a parasitic nematode of mammals has proven to be an elusive goal. We report here the heritable germline transformation of Parastrongyloides trichosuri, a nematode parasite whose natural hosts are Australian possums of the genus Trichosurus. This parasite can undergo multiple free-living life cycles and these replicative cycles can be maintained indefinitely in the laboratory. Transformation was achieved by microinjection of DNA into the ovary syncytium of either free-living or parasitic adult females. By selecting for the transgenic progeny of successive free-living life cycles, it was possible to establish and maintain transgenic lines. All three transgenic lines tested were shown capable of establishing patent infections in possums and to transmit the functional transgene to their progeny. The transgene, driven by the Pt hsp-1 promoter, was constitutively expressed in intestinal cells at all stages of both parasitic and free-living life cycles, although gene silencing appears to occur in some transgenic progeny. This is the first report of heritable transgenesis in a parasitic nematode of a mammal and we discuss a variety of previously inaccessible experimental avenues that will now be possible with this powerful model system.  相似文献   

2.
Commonly studied nematode parasites have not proven amenable to simple genetic analyses and this has significantly reduced the available research options. We introduce here a nematode parasite of mammals, Parastrongyloides trichosuri, which has features uniquely suited for genetic analysis. This parasite has the capacity to undergo multiple reproductive cycles as a free-living worm and thereby amplify the numbers of its infective L3s in faeces. Culture conditions are presented that permit facile laboratory maintenance of this worm for >90 free-living life cycles (to date) without the need for re-entry into a permissive host. Even after long maintenance as a free-living worm, culture conditions can be manipulated to favour development of infective L3 worms, which remain able to successfully infect their marsupial hosts. The switch to infective L3 development is triggered by a secreted factor contained in culture medium conditioned by multiple generations of free-living worm culture. It is simple to perform single pair crosses with P. trichosuri to carry out Mendelian genetics in the laboratory and this has been done multiple times with sibling pairs to generate highly inbred lines. Lines of worms can readily be cryopreserved and recovered. Over 7000 expressed sequence tags have been produced from cDNAs at different life cycle stages and used to identify single nucleotide polymorphisms and microsatellites as genetic markers. Free-living worms live only a few days on average while the patency of parasitic infections can last for several months. Since we show this is not the result of re-infection, we conclude that parasitic worms have a lifespan capacity at least 20-30 times longer than their free-living counterparts. We discuss how it should be possible to exploit these unique features of P. trichosuri as a model for future studies that explore the genetic basis of longevity and parasitism.  相似文献   

3.
4.
5.
6.
Hsp70 chaperones are composed of two domains; the 40 kDa N-terminal nucleotide-binding domain (NDB) and the 30 kDa C-terminal substrate-binding domain (SBD). Structures of the SBD from Escherichia coli homologues DnaK and HscA show it can be further divided into an 18 kDa beta-sandwich subdomain, which forms the hydrophobic binding pocket, and a 10 kDa C-terminal three-helix bundle that forms a lid over the binding pocket. Across prokaryotes and eukaryotes, the NBD and beta-sandwich subdomain are well conserved in both sequence and structure. The C-terminal subdomain is, however, more evolutionary variable and the only eukaryotic structure from rat Hsc70 revealed a diverged helix-loop-helix fold. We have solved the crystal structure of the C-terminal 10 kDa subdomain from Caenorhabditis elegans Hsp70 which forms a helical-bundle similar to the prokaryotic homologues. This provides the first confirmation of the structural conservation of this subdomain in eukaryotes. Comparison with the rat structure reveals a domain-swap dimerisation mechanism; however, the C. elegans subdomain exists exclusively as a monomer in solution in agreement with the hypothesis that regions out with the C-terminal subdomain are necessary for Hsp70 self-association.  相似文献   

7.
We have cloned, expressed, purified and characterised ceFKB-6, the only large tetratricopeptide repeat motif-containing immunophilin in Caenorhabditis elegans which is similar to the human orthologues FKBP51 and FKBP52. It shows increased peptidyl prolyl isomerase activity, the measured k(cat)/K(m) of 1.3 x 10(6) M(-1) s(-1)is twofold greater than that of hFKBP12 and hFKBP51. NMR studies of the interaction between FKB-6 and the C-terminal DAF-21 pentapeptide MEEVD show interactions consistent with those found between the large human immunophilin TPR domains and human Hsp90. In vivo localisation studies show that the fkb-6 gene is expressed in all stages from embryo to adult with predominant expression being noted in the adult dorsal and ventral nerve cords.  相似文献   

8.
The response to high temperatures in adults of two cold stenothermal cave-dwelling leptodirins, Neobathyscia mancinii and Neobathyscia pasai (Coleoptera, Cholevidae) was evaluated by determinating levels of gene expression of two members of the family of heat shock proteins 70 kDa by qPCR. In both species, hsc70 mRNA level was constant with increasing temperature, whereas a significant increase in the inducible member (hsp70) mRNA was observed, higher in N. pasai. This difference could be due to their in-cave distribution: N. pasai colonizes the cave entrance where the temperature is more variable than the internal part where N. mancinii is confined. These results demonstrated for the first time the occurrence of a heat shock response in troglobite insects and suggest the correlation between the intensity of this response and the adaptation to the cave environment.  相似文献   

9.
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.  相似文献   

10.
11.
We have previously shown that the proteasome activator PA28 is essential to Hsp90-dependent protein refolding in vitro, where PA28 mediates transfer of the Hsp90-bound substrate protein to the Hsc70/Hsp40 chaperone machine for its correct refolding. This observation suggests that PA28 may also collaborate with Hsp90 in cells. To examine this possibility, here we have used double-stranded RNA interference (RNAi) against PA28 in Caenorhabditis elegans mutants of daf-21, which encodes Hsp90. We show that C. elegans PA28 facilitates Hsp90-initiated protein refolding, albeit with an activity lower than that of mouse PA28 proteins. RNAi-mediated knockdown of PA28 significantly suppresses the Daf-c (dauer formation constitutive) phenotype of the daf-21 mutant, but it has no affect on the distinct defects of this mutant in sensing odorants. Taking these results together, we conclude that PA28 is likely to function in collaboration with Hsp90 in vivo.  相似文献   

12.
13.
14.

Background

Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results

In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions

Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
EXT gene family members including EXT1, EXT2, and EXTL2 are glycosyltransferases required for heparan sulfate biosynthesis. To examine the biological functions of rib-2, a member of the Caenorhabditis elegans EXT gene family, we generated a mutant worm lacking the rib-2 gene using the UV-TMP method followed by sib-selection. Inactivation of rib-2 alleles induced developmental abnormalities in F2 and F3 homozygous worms, while F1 heterozygotes showed a normal morphology. The F2 homozygous progeny generated from the F1 heterozygous hermaphrodites somehow developed to adult stage but exhibited abnormal characteristics such as developmental delay and egg-laying defects. The F3 homozygous progeny from the F2 homozygous hermaphrodites showed early developmental defects and most of the F3 worms stopped developing during the gastrulation stage. Whole-mount staining analysis for heparan sulfate using Toluidine blue (pH 2.5) revealed a defect of heparan sulfate biosynthesis in the F2 homozygotes. The analysis using fluorometric post-column high-performance liquid chromatography also uncovered reduced production of heparan sulfate in the rib-2 mutant. These results indicate that rib-2 is essential for embryonic development and heparan sulfate biosynthesis in C. elegans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号