首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study, we demonstrate that erythropoietin (Epo) induces the expression and the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) in a time- and dose-dependent manner in Epo-dependent cell line UT-7 cells and in normal human erythroid progenitor cells from cord blood (CD36+) and required de novo protein synthesis. TIMP-1 was not expressed in the absence of Epo. Inhibition of the mitogen-activated protein kinase pathway by the specific inhibitors PD98059 and U0126 and of phosphatidylinositol 3-kinase by LY294002, strongly inhibited Epo-induced TIMP-1 expression and secretion. In the absence of Epo, both latent and active forms of matrix metalloproteinase-9 (MMP-9) were secreted into media. Upon Epo stimulation, MMP-9 and pro-MMP-9 secretion was inhibited in a dose-dependent manner parallel to TIMP-1 induction. The addition of PD98059, U0126, and LY294002 in the presence of Epo restored MMP-9 production in UT-7 and CD36+ cells. Our findings strongly suggest an inversely coordinated regulation of the TIMP-1 gene and MMP-9 production by Epo via mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways.  相似文献   

3.
Niu R  Okamoto T  Iwase K  Nomura S  Mizutani S 《Life sciences》2000,66(12):1127-1137
To elucidate the implication of type IV collagenases(MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) for placental development, we quantified their levels in the conditioned media of placental organ culture and primary culture of the trophoblast as well as in the tissue extracts of placentas from different stages of gestation using specific enzyme-linked immunosorbent assays. First trimester villous tissue secreted about 10 times more pro-MMP-2 than pro-MMP-9, and pro-MMP-2 levels dramatically decreased in the second trimester. On the other hand, pro-MMP-9 levels were more than 10 times higher than those of pro-MMP-2 in the primary culture of the first trimester trophoblast, indicating the involvement of stromal cells for prominent pro-MMP-2 secretion from first trimester villous tissue described above. Levels of TIMPs, especially those of TIMP-2, remained constant throughout gestation both in the culture media and tissue extracts. Gelatin zymography revealed abundant secretion of the active form of MMP-2 as well as pro-MMP-2 from first trimester villous tissue. Western immunoblot analysis confirmed the presence of both TIMP-1 and TIMP-2 in placental tissue. These results suggest that active secretion of MMP-2 from villous tissue in the first trimester and constant production of TIMPs throughout gestation are characteristic of placental development.  相似文献   

4.
CNS tuberculosis (CNS-TB) is the most deadly form of tuberculous disease accounting for 10% of clinical cases. CNS-TB is characterized by extensive tissue destruction, in which matrix metalloproteinases (MMPs) may play a critical role. We investigated the hypothesis that Mycobacterium tuberculosis activates monocyte-astrocyte networks increasing the activity of key MMPs. We examined the expression of all human MMPs and the tissue inhibitors of metalloproteinases (TIMPs) in human astrocytes stimulated by conditioned medium from M. tuberculosis-infected monocytes (CoMTB). Real-time RT-PCR showed that gene expression of MMP-1, -2, -3, -7, and -9 was increased (p < 0.05). MMP-9 secretion was significantly up-regulated at 24 h and increased over 120 h (p < 0.01). MMP-1, -3, and -7 secretion was not detected. Secretion of MMP-2 was constitutive and unaffected by CoMTB. Astrocyte gene expression and secretion of TIMP-1 was not affected by CoMTB although TIMP-2 secretion increased 3-fold at 120 h. Immunohistochemical analysis of human brain biopsies confirmed that astrocyte MMP-9 secretion is a predominant feature in CNS-TB in vivo. Dexamethasone inhibited astrocyte MMP-9, but not TIMP-1/2 secretion in response to CoMTB. CoMTB stimulated the nuclear translocation of NF-kappaB, inducing a 6-fold increase in nuclear p65 and a 2-fold increase in nuclear p50. This was associated with degradation of IkappaBalpha and beta within 30 min, persisting for 24 h. In summary, networks active between monocytes and astrocytes regulate MMP-9 activity in tuberculosis and astrocytes are a major source of MMP-9 in CNS-TB. Astrocytes may contribute to a matrix degrading environment within the CNS and subsequent morbidity and mortality.  相似文献   

5.
Matrix metalloproteinase-9 (MMP-9) is a member of the MMP family that has been associated with degradation of the extracellular matrix in normal and pathological conditions. A unique characteristic of MMP-9 is its ability to exist in a monomeric and a disulfide-bonded dimeric form. However, there exists a paucity of information on the properties of the latent (pro-MMP-9) and active MMP-9 dimer. Here we report the purification to homogeneity of the monomer and dimer forms of pro-MMP-9 and the characterization of their biochemical properties and interactions with tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Gel filtration and surface plasmon resonance analyses demonstrated that the pro-MMP-9 monomeric and dimeric forms bind TIMP-1 with similar affinities. In contrast, TIMP-2 binds only to the active forms. After activation, the two enzyme forms exhibited equal catalytic competence in the turnover of a synthetic peptide substrate with comparable kinetic parameters for the onset of inhibition with TIMPs and for dissociation of the inhibited complexes. Kinetic analyses of the activation of monomeric and dimeric pro-MMP-9 by stromelysin 1 revealed K(m) values in the nanomolar range and relative low k(cat) values (1.9 x 10(-3) and 4.1 x 10(-4) s(-1), for the monomer and dimer, respectively) consistent with a faster rate (1 order of magnitude) of activation of the monomeric form by stromelysin 1. This suggests that the rate-limiting event in the activation of pro-MMP-9 may be a requisite slow unfolding of pro-MMP-9 near the site of the hydrolytic cleavage by stromelysin 1.  相似文献   

6.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

7.
To gain insight into the pathogenesis of hepatic fibrosis related to insulin resistance, we have examined the effects of euglycemic hyperinsulinemia on three matrix metalloproteinases (MMP-2, MMP-9, and MT1-MMP) and on two major tissue inhibitors of MMPs (TIMP-1 and TIMP-2) in liver of insulin-sensitive and insulin-resistant rats. Four hours of insulin infusion (4.8 mU.kg(-1).min(-1)) without or with lipid-heparin infusion (to produce insulin resistance) decreased hepatic MMP-2 mRNA (by RT-PCR), pro-MMP-2, MMP-2, MMP-9, and MT1-MMP (all by Western blots) and the gelatinolytic activity of MMP-2 (by gelatin zymography) by approximately 60-80%. Hyperinsulinemia ( approximately 1.6 mmol/l) increased TIMP-1 and TIMP-2 concentrations (by ELISA) in insulin-sensitive and insulin-resistant rats. Phosphoinositide 3-kinase was activated by insulin in insulin-sensitive rats and inhibited in insulin-resistant rats. Extracellular signal-regulated kinases 1/2 (ERK1/2) were activated by insulin in insulin-sensitive rats and partially inhibited in insulin-resistant rats; c-jun NH(2)-terminal kinase-1 (JNK1), JNK2/3, or p38 MAPK were only activated by lipid but not by insulin. We conclude that hyperinsulinemia, whether or not associated with insulin resistance, shifts the MMP/TIMP balance toward reduction of extracellular matrix degradation and thus may promote the development of hepatic fibrosis.  相似文献   

8.
9.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

10.
Flavonoids have been proposed to act as chemopreventive agents in numerous epidemiological studies and have been shown to inhibit angiogenesis and proliferation of tumor cells and endothelial cells in vitro. Angiogenesis requires tightly controlled extracellular matrix degradation mediated by extracellular proteolytic enzymes including matrix metalloproteinases (MMPs) and serine proteases, in particular, the urokinase-type plasminogen activator (uPA)-plasmin system. In this study, we have investigated the antiangiogenic mechanism of the flavonoids, genistein, apigenin, and 3-hydroxyflavone in a human umbilical vein endothelial cell (HUVEC) model. The stimulation of serum-starved HUVECs with vascular endothelial growth factor/basic fibroblast growth factor (VEGF/bFGF) caused marked increase in MMP-1 production and induced the pro-MMP-2 activation accompanied by the increase in MT1-MMP expression. However, pretreatment with flavonoids before VEGF/bFGF stimulation completely abolished the VEGF/bFGF-stimulated increase in MMP-1 and MT1-MMP expression and pro-MMP-2 activation. Genistein blocked VEGF/bFGF-stimulated increase in TIMP-1 expression and decrease in TIMP-2 expression. Apigenin and 3-hydroxyflavone further decreased TIMP-1 expression below basal level and completely abolished TIMP-2 expression. VEGF and bFGF stimulation also significantly induced uPA expression, most strikingly the level of 33 kDa uPA, and increased the expression of PA inhibitor (PAI)-1. Genistein, apigenin, and 3-hydroxyflavone effectively blocked the generation of 33 kDa uPA, and further decreased the activity of the 55 kDa uPA and the expression of PAI-1 below the basal level. In conclusion, these data suggest that genistein, apigenin, and 3-hydroxyflavone inhibit in vitro angiogenesis, in part via preventing VEGF/bFGF-induced MMP-1 and uPA expression and the activation of pro-MMP-2, and via modulating their inhibitors, TIMP-1 and -2, and PAI-1.  相似文献   

11.
Cultured hepatic stellate cells (HSCs) are known to change their morphology and function with respect to the production of extracellular matrices (ECMs) and matrix metalloproteinases (MMPs) in response to ECM components. We examined the regulatory role of the native form of type I collagen fibrils in pro-MMP-2 production and activation in cultured HSCs. Gelatin zymography of the conditioned media revealed that pro- and active form of MMP-2 was increased in the HSCs cultured on type I collagen gel but not on type I collagen-coated surface, gelatin-coated surface, type IV collagen-coated surface, or Matrigel, suggesting the importance of the native form of type I collagen fibrils in pro-MMP-2 production and activation. The induction of active MMP-2 by extracellular type I collagen was suppressed by the blocking antibody against integrin beta1 subunits, indicating the involvement of integrin signaling in pro-MMP-2 activation. RT-PCR analysis indicated that MMP-2, membrane type-1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA levels were elevated in HSCs cultured on type I collagen gel. The increased MT1-MMP proteins were localized on the cell surface of HSCs cultured on type I collagen gel. In contrast to the expression of MMP-2, HSCs showed a great decline in MMP-13 expression in HSCs cultured on type I collagen gel. These results indicate that the native fibrillar (polymerized) but not monomeric form of type I collagen induced pro-MMP-2 production and activation through MT1-MMP and TIMP-2 in cultured HSCs, suggesting an important role of HSCs in ECM remodeling in the hepatic perisinusoidal spaces.  相似文献   

12.
The levels of metalloproteinases (MMP-2,-9), their tissue inhibitors (TIMP-1,-2) and extracellular matrix metalloproteinase inducer (EMMPRIN) were studied in tumor tissue and blood serum from patients with head and neck squamous cell carcinoma. Immunohistochemical investigation showed much higher expression of MMP-9 and TIMP-1 in tumor tissue compared with MMP-2 and TIMP-2. There was different distribution of the investigated parameters (except TIMP-1) in cancer cells and stroma. Accumulation of MMP-2, MMP-9, and TIMP-2 was found mainly in cell elements (fibrocytes, leukocytes, etc.) and in stromal extracellular space. Expression of EMMPRIN was significantly higher in tumor cells than in stromal cells. It is possible that carcinoma cells express EMMPRIN, which may increase MMP production by surrounding cells. There was significant decrease of TIMP-1 expression in carcinoma cells with N1 grade of metastasis than in tumors without metastasis. The level of TIMP-1 in blood serum from patients with tumor metastases to regional lymph nodes was lower than in serum from patients without metastases. Thus, MMP-9 and TIMP-1 play an important role in the development of head and neck squamous cell carcinoma and the TIMP-1 level in blood serum and cancer tissues is linked to the first grade of regional lymph node metastasis.  相似文献   

13.
Microdialysis studies indicate that mechanical loading of human tendon tissue during exercise or training can affect local synthesis and degradation of type I collagen. Degradation of collagen and other extracellular matrix proteins is controlled by an interplay between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). However, it is unknown whether local levels of MMPs and TIMPs are affected by tendon loading in humans in vivo. In the present experiment, six healthy young men performed 1 h of uphill (3%) treadmill running. Dialysate was collected from microdialysis probes (placed in the peritendinous tissue immediately anterior to the Achilles tendon) before, immediately after, 1 day after, and 3 days after an exercise bout. MMP-2 and MMP-9 were measured in dialysate by gelatin zymography, and amounts were quantified by densitometry in relation to total protein in the dialysate. TIMP-1 and TIMP-2 were analyzed by reverse gelatin zymography and semiquantitated visually. Pro-MMP-9 increased markedly after exercise and remained high for 3 days after exercise. Pro-MMP-2 dropped from the basal level immediately after exercise and remained low 1 day after exercise but was slightly elevated 3 days after exercise. The MMP-2 inhibitory activity of TIMP-1 was clearly elevated 1 and 3 days after exercise, and the MMP-2 inhibitory activity of TIMP-2 rose 1 day after loading. The present findings demonstrate enhanced interstitial amounts of MMPs and TIMPs after exercise in the human peritendinous tissue in vivo, and the magnitude and time pattern of these changes may well indicate that MMPs and TIMPs are playing a role in extracellular matrix adaptation to exercise in tendon tissue.  相似文献   

14.
Expression patterns of matrix metalloproteinase-9 (MMP-9) and its specific inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1), are closely correlated with physiological and pathological processes characterized by the degradation and accumulation of the extracellular matrix (ECM). Both, activated MMP-9 and pro-MMP-9 can bind to TIMP-1, and most cell types secrete MMP-9 in complex with TIMP-1. Utilizing immunofluorescence, we observed intracellular co-localization of MMP-9 and TIMP-1 in stimulated human fibrosarcoma cells. In the present study we searched for the origin of the complex formation between the latent enzyme and its specific inhibitor on a subcellular level. Fluorescence resonance energy transfer (FRET) between the fluorescently labeled enzyme and its inhibitor in co-transfected cells were measured. MMP-9 and TIMP-1 were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein and transiently expressed in human hepatoma cells. The intracellular distribution of fluorescently labeled TIMP-1 and MMP-9 was analyzed by confocal laser scanning microscopy. Intracellular complex formation in the Golgi apparatus was verified, demonstrating FRET between MMP-9-CFP and TIMP-1-YFP. Our data provide evidence that the proMMP-9-TIMP-1 complex is already present in the Golgi apparatus. This may be of significance for a number of intracellular and extracellular biochemical processes involving proMMP-9. However, the magnitude and functional relevance of this finding remain unknown.  相似文献   

15.
Hepatic fibrosis is the hallmark of Schistosoma mansoni infection and often results in portal hypertension and bleeding from esophageal varices. The fibrotic process is highly dependent on type 2 cytokines, yet their role in the regulation of extracellular matrix remodeling genes remains largely unknown. Here, we examined the expression of matrix metalloproteases (MMP) -2, -3, -9, -12, and -13 and their inhibitors, tissue inhibitor of metalloproteases (TIMP) -1, -2, and -3, in the livers of infected mice and correlated their expression profiles with fibrosis and type 2 cytokine production. Expression of MMP-2, -3, -9, -12, and -13 and of TIMP-1 and -2 mRNA rapidly increased at the onset of egg laying in infected mice, while TIMP-3 was unchanged. Because TIMP are presumed to be important regulators of the extracellular matrix, and their expression correlated with the development of fibrosis, we studied their role in fibrogenesis by infecting TIMP-1- and TIMP-2-deficient mice. Strikingly, our data revealed no role for TIMP-1 or -2 in the fibrotic pathology induced by S. mansoni eggs. Because of these findings, we infected IL-10/IFN-gamma-deficient mice that develop an exaggerated fibrotic response to determine whether changes in type 2 cytokine dominance influence the pattern of MMP and TIMP expression. Fibrosis and type 2 cytokine production correlated with increased MMP-2/MMP-9 vs TIMP-1/TIMP-2 expression. These data, in addition to our knockout studies, demonstrate that TIMP-1/TIMP-2 play no essential role in fibrogenesis in schistosomiasis. Indeed, our findings suggest that inhibiting profibrotic cytokines or specific MMP may be a more effective strategy to ameliorate fibrotic pathology.  相似文献   

16.
Gonadotropins stimulate ovarian proteolytic enzyme activity that is believed to be important for the remodeling of the follicular extracellular matrix. Membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified in vitro as an activator of pro-MMP-2 by forming a complex with tissue inhibitors of metalloproteinase-2 (TIMP-2). In the present study, the expression pattern of MT1-MMP mRNA and the role of MT1-MMP were examined in the ovary using the gonadotropin-treated immature rat model. Ovaries were collected at selected times after eCG or hCG. RNase protection assays revealed a transient increase in MT1-MMP mRNA beginning 4 h after hCG. High expression of MT1-MMP mRNA was localized to the theca-interstitial layer of developing and preovulatory follicles, while low expression was observed in the granulosa cell layer of developing follicles by in situ hybridization. The localization pattern of MT1-MMP mRNA was compared with TIMP-2 mRNA. Both MMP-2 and TIMP-2 mRNA were expressed in the theca layer of preovulatory follicles, showing a similarity to MT1-MMP mRNA expression. To further determine whether MT1-MMP activates pro-MMP-2 in the ovary, crude plasma membrane fractions from preovulatory ovaries were analyzed by gelatin zymography. In plasma membrane fractions, pro-MMP-2 increased around the time of ovulation. Upon incubation, pro-MMP-2 was activated with the highest levels of activation at 12 h post-hCG. The addition of MT1-MMP antibody or excess TIMP-2 to membrane fractions inhibited pro-MMP-2 activation. The increase in MT1-MMP mRNA may be an important part of the mechanism necessary for the efficient generation of active MMP-2 during the ovulatory process.  相似文献   

17.
18.
Curcumin (Cur), a component of turmeric (Curcuma longa), has been reported to exhibit antimetastatic activities, but the mechanisms remain unclear. Other curcuminoids present in turmeric, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) have not been investigated whether they exhibit antimetastatic activity to the same extent as curcumin. The regulation of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) play important role in cancer cell invasion by cleavage of extracellular matrix (ECM). In this line, we comparatively examined the influence of Cur, DMC and BDMC on the expressions of uPA, MMP-2, MMP-9, membrane Type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-2), and in vitro invasiveness of human fibrosarcoma cells. The results indicate that the differential potency for inhibition of cancer cell invasion was BDMC> or =DMC>Cur, whereas the cell migration was not affected. Zymography analysis exhibited that curcumin, DMC and BDMC significantly decreased uPA, active-MMP-2 and MMP-9 but not pro-MMP-2 secretion from the cells in a dose-dependent manner, in which BDMC and DMC show higher potency than curcumin. The suppression of active MMP-2 level correlated with inhibition of MT1-MMP and TIMP-2 protein levels involved in pro-MMP-2 activation. Importantly, BDMC and DMC at 10 microM reduced MT1-MMP and TIMP-2 protein expression, but curcumin slightly reduced only MT1-MMP but not TIMP-2. In addition, three forms of curcuminoids significantly inhibited collagenase, MMP-2, and MMP-9 but not uPA activity. In summary, these data demonstrated that DMC and BDMC show higher antimetastasis potency than curcumin by the differentially down-regulation of ECM degradation enzymes.  相似文献   

19.
Membrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing. Here, we have shown that individual Timp deficiencies differentially affect MMP-2 processing using primary mouse embryonic fibroblasts (MEFs). Timp-3 deficiency accelerated pro-MMP-2 activation in response to both cytochalasin D and concanavalin A. Exogenous TIMP-2 and N-TIMP-3 inhibited this activation, whereas TIMP-3 containing matrix from wild-type MEFs did not rescue the enhanced MMP-2 activation in Timp-3(-/-) cells. Increased processing of MMP-2 did not arise from increased expression of MT1-MMP, MT2-MMP, or MT3-MMP or altered expression of TIMP-2 and MMP-2. To test whether increased MMP-2 processing in Timp-3(-/-) MEFs is dependent on TIMP-2, double deficient Timp-2(-/-)/-3(-/-) MEFs were used. In these double deficient cells, the cleavage of pro-MMP-2 to its intermediate form was substantially increased, but the subsequent cleavage of intermediate-MMP-2 to fully active form, although absent in Timp-2(-/-) MEFs, was detectable with combined Timp-2(-/-)/-3(-/-) deficiency. TIMP-4 associates with MMP-2 and MT1-MMP in a manner similar to TIMP-3, but its deletion had no effect on pro-MMP-2 processing. Thus, TIMP-3 provides an inherent regulation over the kinetics of pro-MMP-2 processing, serving at a level distinct from that of TIMP-2 and TIMP-4.  相似文献   

20.
MMP-9 (gelatinase B) is produced in a latent form (pro-MMP-9) that requires activation to achieve catalytic activity. Previously, we showed that MMP-2 (gelatinase A) is an activator of pro-MMP-9 in solution. However, in cultured cells pro-MMP-9 remains in a latent form even in the presence of MMP-2. Since pro-MMP-2 is activated on the cell surface by MT1-MMP in a process that requires TIMP-2, we investigated the role of the MT1-MMP/MMP-2 axis and TIMPs in mediating pro-MMP-9 activation. Full pro-MMP-9 activation was accomplished via a cascade of zymogen activation initiated by MT1-MMP and mediated by MMP-2 in a process that is tightly regulated by TIMPs. We show that TIMP-2 by regulating pro-MMP-2 activation can also act as a positive regulator of pro-MMP-9 activation. Also, activation of pro-MMP-9 by MMP-2 or MMP-3 was more efficient in the presence of purified plasma membrane fractions than activation in a soluble phase or in live cells, suggesting that concentration of pro-MMP-9 in the pericellular space may favor activation and catalytic competence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号