首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An in vitro culture system was developed for assaying the infectivity of the human hepatitis delta virus (HDV). Hepatocytes were isolated from chimpanzee liver and grown in a serum-free medium. Cells were shown to be infectible by HDV and to remain susceptible to infection for at least 3 weeks in culture, as evidenced by the appearance of RNA species characteristic of HDV replication as early as 6 days postinfection. When repeated experiments were carried out on cells derived from an animal free of hepatitis B virus (HBV), HDV infection occurred in a consistent fashion but there was no indication of infection with the HBV that was present in the inoculum. Despite numerous attempts with different sources of HBV inocula free of HDV, there was no evidence that indicated susceptibility of these cells to HBV infection. This observation may indicate that HBV and HDV use different modes of entry into hepatocytes. When cells derived from an HBV-infected animal were exposed to HDV, synthesis and release of progeny HDV particles were obtained in addition to HBV replication and production of Dane particles. Although not infectible with HBV, primary cultures of chimpanzee hepatocytes are capable of supporting part of the life cycle of HBV and the entire life cycle of HDV.  相似文献   

2.
BACKGROUND: Antiviral cellular immune responses may influence immunological homeostasis in HIV-infected persons. Recent data indicate that V gamma 9/V delta 2 T lymphocytes display potent cytotoxic activities against human cells infected with certain viruses including HIV. Understanding the role of gamma delta T cells in the course of HIV infection may be helpful for designing novel treatment strategies for HIV-associated disorders. MATERIALS AND METHODS: The constitutive recognition of Daudi cells and monoethyl pyrophosphate (Etpp) by peripheral blood V gamma 9/V delta 2 T cells was assessed using a proliferation assay. The cytotoxicity of Daudi-stimulated lymphocyte populations was measured by chromium release assays. The HIV infectivity for gamma delta T cell clones was determined by measuring the levels of HIV p24 in cell supernatants. The effect of in vitro HIV-infection on cytokine mRNA production by gamma delta T cell clones was assessed by PCR. RESULTS: The constitutive proliferative responses of peripheral blood V gamma 9/V delta 2 T cells and the lytic functions of Daudi-expanded lymphoid cells from HIV+ persons were substantially diminished in comparison with those of HIV-seronegative persons. These alterations were present in asymptomatic HIV+ persons prior to substantial alpha beta CD4+ T cell loss. Productive HIV infection of gamma delta T cells in vitro had no measurable effect either on their proliferative response to Daudi stimuli or on the expression of cytokine mRNAs for IFN-gamma, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-13. CONCLUSIONS: The constitutive responsiveness of V gamma 9/V delta 2 T lymphocytes to Daudi and Etpp is severely altered in HIV+ persons. HIV infection of gamma delta T cells in vitro does not substantially change their cytokine expression or antigenic response.  相似文献   

3.
Infection with hepatitis delta virus (HDV) is an important cause of acute and chronic liver disease and can be rapidly fatal. Sequencing of the HDV RNA genome has revealed variability at the C-terminal end of the delta antigen reading frame. One genome type (termed the S genome) synthesizes a 24-kDa protein thought to be required for genome replication. Another genome type (termed the L genome) extends the reading frame by 19 amino acids as a result of a single base change. Replication of the S and L genomes was studied in cultured fibroblasts. While the S genome efficiently initiated genome replication, the L genome did not. Moreover, in a codelivery experiment, L genome RNA inhibited replication of the S genome. Potent trans inhibition was also observed following cotransfection of the S genome and a plasmid encoding the larger delta antigen. Mutational analysis indicated that the inhibitory activity was not a simple function of the large delta antigen reading frame's extra length. Implications for the viral life cycle, clinical infection, and potential treatment are discussed.  相似文献   

4.
Liver disease may become ameliorated in some patients with chronic hepatitis D virus (HDV) infection. We present here a study based on longitudinal sampling to investigate the viral dynamics in chronic HDV infection. We examined the HDV variants from different time points, especially those before and after the elevation of serum aminotransferase levels. The datasets from each patient were tested for positive selection by using maximum-likelihood methods with heterogeneous selective pressures along the nucleotide sequence. An average of 4.9%, ranging from 3.1 to 6.8%, of the entire delta antigen sites was regulated by a diversifying selection. Most of the positively selected sites were associated with immunogenic domains. Likelihood ratio tests revealed a significant fitness of positive selection over neutrality of the hepatitis delta antigen gene in all patients. We further adapted a neural network method to predict potential cytotoxic T ligand epitopes. Among the HLA-A*0201 cytotoxic T ligand epitopes, three consistent epitopes across all three genotypes were identified: amino acids (aa) 43 to 51, 50 to 58, and 114 to 122. Three patients (60%) had sites evolving under positive selection in the epitope from aa 43 to 51, and four patients (80%) had sites evolving under positive selection in the epitope from aa 114 to 122. The discovery of immunogenic epitopes, especially cytotoxic-T-lymphocyte ligands, associated with chronic HDV infection may be crucial for further development of novel treatments or designs in vaccine for HDV superinfection.  相似文献   

5.
Gudima S  He Y  Chai N  Bruss V  Urban S  Mason W  Taylor J 《Journal of virology》2008,82(15):7276-7283
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) share the HBV envelope proteins. When woodchucks chronically infected with woodchuck hepatitis virus (WHV) are superinfected with HDV, they produce HDV with a WHV envelope, wHDV. Several lines of evidence are provided that wHDV infects not only cultured primary woodchuck hepatocytes (PWH) but also primary human hepatocytes (PHH). Surprisingly, HBV-enveloped HDV (hHDV) and wHDV infected PHH with comparable efficiencies; however, hHDV did not infect PWH. The basis for these host range specificities was investigated using as inhibitors peptides bearing species-specific pre-S (where S is the small envelope protein) sequences. It was found that pre-S1 contributed to the ability of wHDV to infect both PHH and PWH. In addition, the inability of hHDV to infect PWH was not overcome using a chimeric form of hHDV containing WHV S protein, again supporting the essential role of pre-S1 in infection of target cells. One interpretation of these data is that host range specificity of HDV is determined entirely by pre-S1 and that the WHV and HBV pre-S1 proteins recognize different receptors on PHH.  相似文献   

6.
Hepatitis delta virus (HDV) is a subviral agent of humans which is dependent upon hepatitis B virus as a helper for transmission. HDV can be experimentally transmitted to woodchucks by using woodchuck hepatitis virus (WHV) as the helper. We used this model system to study two types of HDV infections: those of animals already chronically infected with WHV and those of animals without any evidence of prior exposure to WHV. At 5 to 10 days after infection with HDV, liver biopsies of these two groups of animals indicated that around 1% of the hepatocytes were infected (HDV antigen positive). Moreover, similar amounts of replicative forms of HDV RNA were detected. In contrast, by 20 days postinfection, the two groups of animals were quite different in the extent of the HDV infection. The animals chronically infected with WHV showed spread of the infection within the liver and the release of high titers of HDV into the serum. In contrast, the animals not previously exposed to WHV showed a progressive reduction in liver involvement, and at no time up to 165 days postinfection could we detect HDV particles in the serum. However, if these animals were inoculated with a relatively high titer of WHV at either 7 or even 33 days after the HDV infection, HDV viremia was observed. Our data support the interpretation that in these animals, hepatocytes were initially infected in the absence of helper virus, HDV genome replication took place, and ultimately these replicating genomes were rescued by the secondary WHV infection. The observation that HDV can survive in the liver for at least 33 days in the absence of coinfecting helper virus may be relevant to the reemergence of HDV infection following liver transplantation.  相似文献   

7.
Editing on the genomic RNA of human hepatitis delta virus.   总被引:3,自引:2,他引:3       下载免费PDF全文
H Zheng  T B Fu  D Lazinski    J Taylor 《Journal of virology》1992,66(8):4693-4697
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M. Chao, S.-Y. Hsieh, C. Sureau, K. Nishikura, and J. Taylor, J. Virol. 64:1021-1027, 1990). This change creates an extension in the length of the open reading frame for the delta antigen from 195 to 214 amino acids. These two proteins, the small and large delta antigens, have important and distinct roles in the life cycle of HDV. To further investigate the mechanism of this specific nucleotide alteration, we developed a sensitive assay involving the polymerase chain reaction to monitor changes on HDV RNA sequences as they occurred in transfected cells. We found that the substrate for the sequence change was the viral genomic RNA rather than the antigenomic RNA. This sequence change occurred independently of genome replication or the presence of the delta antigen. Less than full-length genomic RNA could act as a substrate, but only if it also contained a corresponding RNA sequences from the other side of the rodlike structure, which is characteristic of HDV. We were also able to reproduce the HDV base change in vitro, by addition of purified viral RNA to nuclear extracts of cells from a variety of species.  相似文献   

8.
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5'-hydroxyl and a cyclic 2',3'-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3' end of the delta antigen-coding region, the only known functional open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.  相似文献   

9.
Assembly of hepatitis delta virus particles.   总被引:3,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

10.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:1,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

11.
Replication of human hepatitis delta virus: recent developments   总被引:10,自引:0,他引:10  
In a natural setting, hepatitis delta virus (HDV) is only found in patients that are also infected with hepatitis B virus (HBV). In hepatocytes infected with these two viruses, HDV RNA genomes are assembled using the envelope proteins of HBV. Since 1986, we have known that HDV has a small single-stranded RNA genome with a unique circular conformation that is replicated using a host RNA polymerase. These and other features make HDV and its replication unique, at least among agents that infect animals. This mini-review focuses on advances gained over the last 2-3 years, together with an evaluation of HDV questions that are either unsolved or not yet solved satisfactorily.  相似文献   

12.
L Sharmeen  M Y Kuo    J Taylor 《Journal of virology》1989,63(3):1428-1430
A 179-base fragment of RNA from the 1,679-base antigenome of hepatitis delta virus can not only self-cleave but, when the ends of the resultant fragments are brought into apposition by base pairing to another RNA, also self-ligate. Thus, processing events needed for genome replication in vivo may be strictly RNA mediated.  相似文献   

13.
Human hepatitis delta virus (HDV), obtained from the serum of an experimentally infected woodchuck, was injected into either the peritoneal cavity or the tail vein of both adult CB17 mice and mice with a severe combined immunodeficiency (CB17-scid mice). Three lines of evidence indicated that the virus was able to reach the liver and infect hepatocytes: (i) the amount of HDV genomic RNA detected in the liver by Northern (RNA) analysis increased during the first 5 to 10 days postinoculation, reaching a peak that was about threefold the amount in the original inoculum; (ii) also detected in the liver was the viral antigenomic RNA, which is complementary to the genomic RNA found in virions, and is diagnostic for virus replication; and (iii) by immunoperoxidase staining of liver sections, the delta antigen was detected in the nuclei of scattered cells identifiable as hepatocytes. In all of the mice, clearance of the infection occurred between 10 and 20 days after inoculation. The half-life for clearance was about 3 days in CB17-scid mice, indicating that clearance of infection did not involve a T- and B-cell-dependent immune response. Cell-to-cell spread of the initial infection was not detected. One possible interpretation of our results is that HDV infection of hepatocytes is directly cytopathic. Also, the results imply that chronic infection of the liver in humans may require continuous spread of virus within the liver. Alternatively, HDV in the absence of helper virus may be unable to cause a chronic infection of hepatocytes in vivo.  相似文献   

14.
Taylor JM  Han Z 《PloS one》2010,5(12):e15784
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH) and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) and brilliant blue G (BBG), both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis.  相似文献   

15.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

16.
J C Wu  P J Chen  M Y Kuo  S D Lee  D S Chen    L P Ting 《Journal of virology》1991,65(3):1099-1104
The hepatitis delta virus (HDV) is a defective virus with a coat composing of the surface antigen of its helper virus, hepatitis B virus (HBV). Replication of HDV in the absence of HBV has been shown in cell cultures by transient transfection of the HDV plasmid. However, the formation and release of HDV virions have not been observed. In this report, a human hepatoma cell line HuH-7 was transiently cotransfected with HDV and HBV plasmids. The production of monomeric and multimeric antigenomic RNAs of HDV in the transfected cells indicated replication of the HDV genome. The major 3.5- and 2.1-kb RNAs of HBV were also expressed. Virions of both HDV and HBV were released from the cotransfected cells, as shown by the detection of monomeric genomic HDV RNA and partially double-stranded HBV DNA in the culture medium. Thus, this is the first report that describes the assembly and the release of HDV viral particles in an in vitro cell culture. The HDV virions released possessed physicochemical properties identical to those of the HDV virions found in infected human serum. Furthermore, expression of both the 3.5- and 2.1-kb RNAs of HBV was shown to be dramatically decreased by the presence of HDV, indicating suppression of the expression of HBV genes by HDV. The amount of HBV virions released was similarly suppressed by HDV. Cotransfection of HBV with an expression plasmid of the HDV delta antigen remarkably reduced the levels of the 3.5- and 2.1-kb HBV RNAs, indicating that suppression of the expression of HBV RNAs by HDV occurs via the action of the delta antigen. This HBV- and HDV-cotransfected human hepatoma cell line should provide an excellent system for the study of the function of the delta antigen and the interaction between HDV and its helper, HBV.  相似文献   

17.
We obtained two lines of evidence that monolayer cultures of primary woodchuck hepatocytes support replication of the genome of human hepatitis delta virus (HDV). (i) From a Northern (RNA blot) analysis of the HDV-related RNA in infected cultures, both genomic and antigenomic 1.7-kilobase RNA species were detected at 11 days after infection. The ratio of genomic RNA to antigenomic RNA was 2:1 to 10:1, comparable to that previously reported in studies of experimentally infected chimpanzees and woodchucks. (ii) Replication in culture was also demonstrated by in situ hybridization with a strand-specific probe. Such studies showed that only a small fraction of the cultured cells supported replication and that in such cells the relative and absolute levels of the HDV RNAs were comparable to those in liver cells infected in vivo. Furthermore, as with the in vivo studies, the HDV RNAs were predominantly localized to the nucleus. In summary, we demonstrated that cultured cells supported both the early events of HDV adsorption and penetration and the intermediate events of genome replication.  相似文献   

18.
19.
Phosphorylation of the hepatitis delta virus antigens.   总被引:2,自引:2,他引:0       下载免费PDF全文
V Bichko  S Barik    J Taylor 《Journal of virology》1997,71(1):512-518
We used two-dimensional electrophoresis (nonequilibrium pH gradient electrophoresis followed by sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis) coupled with 32P labeling and immunoblotting detection with 125I-protein A to detect and quantitate phosphorylation of the large and small forms of the delta antigen (deltaAg-L and deltaAg-S, respectively). Analysis of deltaAg species from the serum and liver of an infected woodchuck as well as deltaAg species expressed in and secreted from transfected Huh7 cells revealed the following. (i) No detectable phosphorylation of deltaAg-S occurred. (ii) In virions from the serum of an infected animal and in the particles secreted from cotransfected cells, none of the deltaAg-L was phosphorylated. (iii) Only in the infected liver and in transfected cells was any phosphorylation detected; it corresponded to a monophosphorylated form of deltaAg-L. Given these results, we carried out serine-to-alanine mutagenesis of the deltaAg-L to determine whether the monophosphorylation was predominantly at a specific site on the unique 19-amino-acid (aa) extension. We mutated each of the two serines, aa 207 and 210, on this extension and also the serine at aa 177. These three mutations had no significant effect on phosphorylation. In contrast, mutagenesis to alanine of the cysteine at aa 211, which normally acts as the acceptor for farnesylation, completely inhibited phosphorylation. Our interpretation is that the site(s) of phosphorylation is probably not in the 19-aa extension unique to deltaAg-L and that phosphorylation of deltaAg-L may depend upon prior farnesylation. The possible significance of the intracellular phosphorylated forms of deltaAg-L is discussed.  相似文献   

20.
Resistance of human hepatitis delta virus RNAs to dicer activity   总被引:5,自引:0,他引:5       下载免费PDF全文
Chang J  Provost P  Taylor JM 《Journal of virology》2003,77(22):11910-11917
The endonuclease dicer cleaves RNAs that are 100% double stranded and certain RNAs with extensive but <100% pairing to release approximately 21-nucleotide (nt) fragments. Circular 1,679-nt genomic and antigenomic RNAs of human hepatitis delta virus (HDV) can fold into a rod-like structure with 74% pairing. However, during HDV replication in hepatocytes of human, woodchuck, and mouse origin, no approximately 21-nt RNAs were detected. Likewise, in vitro, purified recombinant dicer gave <0.2% cleavage of unit-length HDV RNAs. Similarly, rod-like RNAs of potato spindle tuber viroid (PSTVd) and avocado sunblotch viroid (ASBVd) were only 0.5% cleaved. Furthermore, when a 66-nt hairpin RNA with 79% pairing, the putative precursor to miR-122, which is an abundant liver micro-RNA, replaced one end of HDV genomic RNA, it was poorly cleaved, both in vivo and in vitro. In contrast, this 66-nt hairpin, in the absence of appended HDV sequences, was >80% cleaved in vitro. Other 66-nt hairpins derived from one end of genomic HDV, PSTVd, or ASBVd RNAs were also cleaved. Apparently, for unit-length RNAs of HDV, PSTVd, and ASBVd, it is the extended structure with <100% base pairing that confers significant resistance to dicer action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号