首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Marec  W Traut 《Génome》1994,37(3):426-435
Structure and pairing behavior of sex chromosomes in females of four T(W;Z) lines of the Mediterranean flour moth, Ephestia kuehniella, were investigated using light and electron microscopic techniques and compared with the wild type. In light microscopic preparations of pachytene oocytes of wild-type females, the WZ bivalent stands out by its heterochromatic W chromosome strand. In T(W;Z) females, the part of the Z chromosome that was translated onto the W chromosome was demonstrated as a distal segment of the neo-W chromosome, displaying a characteristic non-W chromosomal chromomere-interchromomere pattern. This segment is homologously paired with the corresponding part of a complete Z chromosome. In contrast with the single ball of heterochromatic W chromatin in highly polyploid somatic nuclei of wild-type females, the translocation causes the formation of deformed or fragmented W chromatin bodies, probably owing to opposing tendencies of the Z and W chromosomal parts of the neo-W. In electron microscopic preparations of microspread nuclei, sex chromosome bivalents were identified by the remnants of electron-dense heterochromatin tangles decorating the W chromosome axis, by the different lengths of the Z and W chromosome axes, and by incomplete pairing. No heterochromatin tangles were attached to the translocated segment of the Z chromosome at one end of the neo-W chromosome. Because of the homologous pairing between the translocation and the structurally normal Z chromosome, pairing affinity of sex chromosomes in T(W;Z) females is significantly improved. Specific differences observed among T(W;Z)1-4 translocations are probably due to the different lengths of the translocated segments.  相似文献   

2.
A. Weith  W. Traut 《Chromosoma》1980,78(3):275-291
Chromosome structure and pairing behaviour of the pachytene bivalents in the wildtype and in W chromosome mutants were studied using a microcentrifugation technique. The spread bivalents display a characteristic lampbrush structure with lateral loops having the typical appearance of nucleosomal fibers, in autosomes as well as in the W and Z chromosomes. While the autosomal loops are always completely dispersed by the spreading forces, the loops of the heterochromatic W chromosome frequently are found to be condensed in tangles. These tangles contain supranucleosomal globular particles of a diameter of 37.7±1.2 nm. — Pairing of the WZ can be complete or partial, probably depending on the stage of the pachytene. Incomplete pairing normally is interpreted as demonstrating non-homology. Pairing was weak, however, even between homologous segments of the W chromosome, which were introduced into the genome in homozygous form by a translocation chromosome.  相似文献   

3.
Barry EG 《Genetics》1972,71(1):53-62
Cytological study of meiotic chromosomes heterozygous for the T(I-->II)39311 translocation confirm genetic evidence (Perkins 1972) that a section of linkage group I including the mating type locus has been inserted into linkage group II. Pachytene chromosomes when fully paired show that a segment from chromosome 1 has been inserted into chromosome 6. When pairing fails between the translocated segment in 6 and its homologous region in chromosome 1, buckles or loops are formed at pachynema in the deletion or insertion areas of the bivalents.-Acentric fragments and anaphase bridges occur at both meiotic divisions and in the subsequent two mitotic divisions in the ascus. These provide supporting evidence that the translocated segment is inverted with respect to centromere in its new location.-Unexpectedly the acentric fragment, formed by crossing over in the inverted translocated segment, persists without degradation in a micronucleus, and it replicates and divides in synchrony with the centric chromosomes in adjacent nuclei.  相似文献   

4.
Female carriers of the T(5;12)31H reciprocal translocation had an average reduction of 73% in oocyte numbers compared with normal litter mates, which was of a magnitude similar to the reduction in sperm counts of male carriers. Analysis of synaptonemal complexes showed that the translocated chromosomes appeared as quadrivalents, or trivalents and univalents, or bivalents in both sexes. Quadrivalents were of three types: fully synapsed, with asynapsis confined to breakpoints, and with unsynapsed ends. There was more pairing in spermatocytes than in oocytes: 37% of spermatocytes, but only 14% of oocytes, contained a fully synapsed quadrivalent, and trivalents were also more frequently fully synapsed in spermatocytes. When these results are compared with those previously obtained for other chromosome anomalies, it becomes evident that there are considerable differences in chromosome pairing between males and females, and that different chromosome rearrangements differ in the relative amount of pairing failure occurring in male and female carriers.  相似文献   

5.
Meiotic chromosomal aberrations in wild populations of Podophyllum peltatum   总被引:1,自引:1,他引:0  
Meiotic chromosomal aberrations observed in wild populations of the plant Podophyllum peltatum include incomplete homologous pairing, non-homologous pairing, and inversion heterozygosity in pachytene; univalents, asymmetrical bivalents, and translocation heterozygosity in metaphase-I; bridge and fragments in anaphase-I; and non-disjunction as detected in anaphase-II. Incomplete homologous pachytene pairing is believed to result in non-homologous pairing and in the formation of metaphase-I univalents. The unequal distribution and precocious division of univalents in anaphase-I leads to non-disjunction. Non-disjunction chromosomes (varying in frequency from 0.0 to 24.6%) appear to be distributed among the genome on the basis of chromosome length. Asymmetrical bivalents and anaphase-I side-arm bridges are believed to be caused by chromatid breakage and fusion rather than inversion heterozygosity. Of the 135 clones examined, 20 were found to be heterozygous for translocations. The possibility of widespread distribution of some translocations is suggested.  相似文献   

6.
Chromosomal axes of chicken oocytes from pre- and post-hatching chickens were analyzed with a microspreading technique for electron microscopy. At leptotene, chromosomal axes begin to be formed as discontinuous, non-polarized axial segments. During zygotene synaptonemal complex (SC) formation begins at the axial ends attached to the nuclear envelope. Polarization of axial ends is nearly simultaneous with the beginning of SC formation. The complete SC set is found at pachytene and it consists of 38 SC's and an unequal SC which has been identified as the ZW pair. This unequal SC is formed by two axes of different length. The Z and W axes represent 6.2% and 4.5% respectively of the combined length of the SC set plus the Z axis. The unpaired segment of the Z axis shortens markedly from early to mid-pachytene and becomes thicker than the lateral elements of SCs. In the paired region the Z axis forms most of the twists around a straighter W axis, suggesting some extent of non-homologous pairing between the Z and W chromosomes in this region. The existence of partial synapsis of the Z and W axes without heteropycnosis of the sex chromosomes is in marked contrast to partial synapsis in the heteropycnotic XY body of mammalian spermatocytes.  相似文献   

7.
用生物素标记的簇毛麦(Haynaldiavillosa)染色体组DNA(totalgenomicDNA)作探针,以普通小麦染色体组DNA作遮盖(用量1:200左右),进行有丝分裂中期和减数分裂中期I染色体的分子原位杂交(GISH),经抗生物素蛋白-辣根过氧化物酶复合物(bio-streptavidin-horseradishperoxidase)和联苯胺四盐酸(DAB)检测显色后,小麦-簇毛麦双倍体、附加系、代换系和易位系中的簇毛麦染色体及染色体片段显棕色,与显浅蓝色的小麦染色体可明显区分。用GISH不仅可以检测导入小麦中的簇毛麦染色质,而且可以清楚地显示出易位染色体断裂点的确切位置。将GISH用于减数分裂期染色体配对分析,还可以清晰形象地显示出同源和非同源染色体之间的配对和分离情况。  相似文献   

8.
Electron microscopic analysis of synaptonemal complexes and analysis of chiasmata distribution in male mice heterozygous for Robertsonian translocation T(16; 17)7Bnr - (Rb7), for synaptonemal reciprocal translocation T(16;17)43H - (T43), in double heterozygotes for these translocations and in males with partial trisomy of the proximal region of chromosome 17 was carried out. Synaptic disturbances around the breakpoints of the translocations, such as asynapsis of homologous regions of partners and non-homologous synapsis of centromeric regions of acrocentric chromosomes, were revealed. Synaptic regularity in the proximal part of the chromosome 17 appeared to be affected by no t12 haplotype. Good coincidence between sizes of mitotic chromosomes and corresponding lateral elements of synaptonemal complexes was found for all chromosomes, with the exception of Rb7 in trisomics. In the latter karyotype, the proximal part of chromosome 17 involved in Robertsonian fusion seems to be shortened in the course of zygotene and never synapted with homologous segment of neither the acrocentric chromosome 17 nor large product of reciprocal translocation. Drastic increase in chiasmata frequency in the proximal part of chromosome 17 was revealed in heterozygotes for T43H and in trisomics, as compared with the double heterozygotes Rb7/T43. The latter finding was explained by the existence of two independent pairing segments in the former karyotypes.  相似文献   

9.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

10.
The pairing behavior of the Z and W chromosomes in the female northern bobwhite quail (Colinus virginianus) was analyzed by electron microscopy of silver-stained synaptonemal complexes (SCs). After autosomal pairing was completed, synapsis of the sex chromosomes initiated at the short-arm end of the W chromosome and one end of the Z chromosome. Synapsis then progressed unidirectionally, producing a sex bivalent in which the entire length of the W axis was paired with an equivalent length of the Z axis. Progressive contraction and asymmetrical twisting of the Z axis ultimately resulted in a fully paired configuration with aligned axial ends. Further contraction of the Z axis reduced the extent of asymmetrical twisting such that only the nonaligned centromeric regions distinguished the SC of the ZW bivalent from SCs of similar-sized autosomes in late-pachytene nuclei. Quantitative analyses indicated that the length of the Z axis shortened significantly during the adjustment process, whereas no significant difference occurred in the length of the W axis. The nonalignment of the centromeric regions during transitional stages of ZW synapsis indicates that direct heterosynapsis of nonhomologous segments, followed by axial equalization of the length inequality, is responsible for the length adjustment during synapsis in the sex chromosomes of the bobwhite quail.  相似文献   

11.
While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.  相似文献   

12.
家鸡联会复合体的亚显微结构分析   总被引:1,自引:0,他引:1  
刘冬梅  张传善 《动物学报》1990,36(4):360-365
本文以表面铺展——硝酸银染色技术,对家鸡的联会复合体(Syneptonemal Complex,SC)作亚显微结构分析。根据对10个精母细胞和10个卵母细胞SC的测量结果,绘制组型图。发现雌雄家鸡的常染色体的SC组型相同。在精母细胞中,性染色体(ZZ)的行为与常染色体相似。在卵母细胞中,性染色体ZW的长度不同,长轴为Z,短轴为W,两者之间只有部分配对,形成SC。从早粗线期到晚粗线期,由同源配对调整为非同源配对。另外,在一只雌鸡中,第一次观察到,有些细胞的常染色体能正常配对,而性染色体完全不配对的现象。  相似文献   

13.
Scanning electron microscopy (SEM) proves to be an appropriate technique for imaging chromatin organization in meiosis I and II of rye (Secale cereale) down to a resolution of a few nanometers. It could be shown for the first time that organization of basic structural elements (coiled and parallel fibers, chromomeres) changes dramatically during the progression to metaphase I and II. Controlled loosening with proteinase K (after fixation with glutaraldehyde) provides an enhanced insight into chromosome architecture even of highly condensed stages of meiosis. By selective staining with platinum blue, DNA content and distribution can be visualized within compact chromosomes as well as in a complex arrangement of fibers. Chromatin interconnecting threads, which are typically observed in prophase I between homologous and non-homologous chromosomes, stain clearly for DNA. In zygotene transversion of chromatid strands to their homologous counterparts becomes evident. In pachytene segments of synapsed and non-synapsed homologs alternate. At synapsed regions pairing is so intimate that homologous chromosomes form one filament of structural entity. Chiasmata are characterized by chromatid strands which traverse from one homolog to its counterpart. Bivalents are characteristically fused at their telomeric regions. In metaphase I and II there is no structural evidence for primary and secondary constrictions.  相似文献   

14.
Meiotic prophase in the spermatocytes ofPanorpa communis was studied. There is a proper sequence of meiotic stages in the testes. Therefore the temporal development of chromosome structure and the synaptonemal complex (SC) could be studied exactly. The structure and function of the SC are interpreted in a new model.—The chromosomes have a lambrush form from leptotene to diakinesis. At leptotene each chromatid produces an additional axis of basic protein and RNA. The axis becomes one of the lateral elements of the SC. At pachytene the DNA of the bivalents is separated into three regions: 1. Most of the DNA forms long loops outside the SC. 2. Smaller portions of the DNA filaments are twisted around the lateral elements of the SC. 3. Short DNA loops (called pairing loops) extend into the pairing space. InPanorpa the SC is composed of two lateral elements (chromosome axes), which are connected by equally spaced transverse filaments, a ladder-like central element in the middle of the pairing space and, on each side of the pairing space parallel to the lateral elements, two RNA containing strands. These are regarded as connected RNA copies of the pairing loops and are responsible for the exact pairing of homologous chromosome segments. At diplotene the axes of the sister chromatids separate to form “double complexes” with four lateral elements. The double complexes of the oocytes contain only transverse filaments between the axes of the homologous chromatids. After a short time they disappear again and the homologues separate to form the chiasmatic bivalents. In the spermatocytes all four chromatid axes are connected by transverse filaments. The pairing complex persists until diakinesis, thereby causing the suppression of the diplotene stage in the light microscope. This may be the only reason for the achiasmatic meiosis in the spermatocytes ofPanorpa.  相似文献   

15.
A surface-spreading synaptonemal complex (SC) technique was used to analyse spermatocytes and oocytes of triploid turbot (Scophthalmus maximus) in order to visualise the process of chromosome synapsis. The most conspicuous characteristic of triploid oocytes is that, in the trivalents, the lateral elements of the SC were frequently associated in threes, either completely along the length of the trivalent, or partially, forming a variety of forked structures. In these nuclei, synapsis usually occurred among homologous chromosomes and the number of bivalents observed was significantly higher than that expected under the assumption of random chromosome association among all partners. However, the frequency of trivalents was very low in triploid spermatocytes, triple synapsis being also scarce. In these nuclei chromosomes that were excluded from homologous synapsis become engaged in random SC formation, and, therefore a considerable number of non-homologous associations are produced. The causes of the synaptic differences observed in triploid males and females of turbot and their possible relation to the sterility displayed by these animals are discussed.  相似文献   

16.
Making use of somatic pairing of homologous chromosome arms and of balanced translocations as cytogenetic markers, the three chromosome pairs of the phorid flyMegaselia scalaris have been identified and described. From measurements of the compliments a standard karyotype was constructed. Identification of the chromosomes allows cytogenetic, phenotypic and molecular markers to be assigned to specific chromosomes. Sex linkage of t(1;2) and t(2;3) translocations define chromosome 2 as the normal sex determining chromosome pair in our translocation strains, and therefore also, probably, in the wild-type strain from which they were derived. No differences between X and Y with respect to size of arms or C-bands were detected.  相似文献   

17.
During meiosis, the paired homologous chromosomes are tightly held together by the synaptonemal complex (SC). This complex consists of two parallel axial/lateral elements (AEs/LEs) and one central element. Here, we observed that PAIR3 localized to the chromosome core during prophase I and associated with both unsynapsed AEs and synapsed LEs. Analyses of the severe pair3 mutant demonstrated that PAIR3 was essential for bouquet formation, homologous pairing and normal recombination, and SC assembly. In addition, we showed that although PAIR3 was not required for the initial recruitment of PAIR2, it was required for the proper association of PAIR2 with chromosomes. Dual immunostaining revealed that PAIR3 highly colocalized with REC8. Moreover, studies using a rec8 mutant indicated that PAIR3 localized to chromosomes in a REC8-dependent manner.  相似文献   

18.
The wheat-Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai-2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridization (GISH) was used to analyze the chromosome constitution of Z1,Z2 by using genomic DNA probes from Th. intermedium and Pseudoroegneria strigosa. The results showed that the chromosome constitution of either Z1 or Z2 composes of 42 wheat chromosomes and two Th. intermedium chromosomes (2Ai-2). The 2Ai-2 chromosome is St-E intercalary translocation, in which the E genomic chromosome segment translocated into the middle region of the long arm of chromosome belonging to St genome. With the genomic DNA probe of Ps. strigosa, the GISH pattern specific to the 2Ai-2 chromosome may be used as a molecular cytogenetic marker. A detailed RFLP analysis on Z1, Z2 and their parents was carried out by using 12 probes on the wheat group 2 chromosomes. Twenty RFLP markers specific to the 2Ai-2 chromosome were identified. Two RAPD markers of OPR16 –350 and OPH09 -1580, specific to the 2Ai-2 chromosome, were identified from 280 RAPD primers. These molecular markers could be used to assisted-select translocation lines with small segment of the 2Ai-2 chromosome and provide tools to localize the BYDV resistance.  相似文献   

19.
The meiotic pairing behaviour of four B isochromosomes of Crepis capillaris was studied by synaptonemal complex (SC) surface spreading of pollen mother cells. The four B chromosomes form a tightly associated group, separate from the standard chromosomes, throughout zygotene and pachytene. All four B chromosomes are also folded around their axis of symmetry, the centromere, and the eight homologous arms are closely aligned from the earliest prophase I stages. A high frequency of multivalent pairing of the four B chromosomes is observed at pachytene, in excess of 90%, mirroring the situation observed at metaphase I but exceeding the frequency expected (76.2%) on the assumption of random pairing among the eight B isochromosome arms with a single distal pairing initiation site per arm. The higher than expected frequency of multivalents is due to the occurrence of multiple pairing initiations along the B isochromosome arms, resulting in high frequencies of pairing partner switches. Pairing of the standard chromosome set is frequently incomplete in the presence of four B chromosomes, and abnormalities of SC structure such as thickening and splitting of axes and lateral elements are also frequently seen. Similarly, B chromosomes show partial pairing failure, the extent of which is correlated with pairing failure in the standard chromosome set. The B chromosomes themselves also show abnormalities of SC structure. Both standard and B chromosomes show non-homologous foldback pairing of regions that have failed to pair homologously.by D. Schweizer  相似文献   

20.
G. Jenkins 《Chromosoma》1985,92(2):81-88
The chromosomes of Lolium temulentum are longer and contain on average 50% more nuclear DNA than the chromosomes of L. perenne. In the hybrid, despite the difference in length and DNA content, pairing between the homoeologous chromosomes at pachytene is effective and the chiasma frequency at first metaphase in pollen mother cells is high, about 1.6 per bivalent, comparable to that in the L. perenne parent. Electron microscopic observations from reconstructed nuclei at pachytene show that synaptonemal complex (SC) formation in 40% of bivalents is perfect, complete and continuous from telomere to telomere. In others, SCs extend from telomere to telomere but incorporate lateral component loops in interstitial chromosome segments. Even in these bivalents, however, pairing is effective in the sense of chiasma formation. The capacity to form perfect SCs is achieved by an adjustment of chromosome length differences both before and during synapsis. Perfect pairing and SC formation is commoner within the larger bivalents of the complement. At zygotene, in contrast to pachytene, pairing is not confined to homoeologous chromosomes. On the contrary there is illegitimate pairing between non-homologous chromsomes resulting in multivalent formation. There must, therefore, be a mechanism operative between zygotene and pachytene that corrects and modifies associations in such a way as to restrict the pairing to bivalents comprised of strictly homoeologous chromosomes. Such a correction bears comparison with that known to apply in allopolyploids. In the hybrid and in the L. perenne parent also, certain specific nucleolar organisers are inactivated at meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号