首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Resistance to antiparasitic drugs: the role of molecular diagnosis   总被引:5,自引:0,他引:5  
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed.  相似文献   

2.
Wuchty S 《PloS one》2011,6(11):e26960
To obtain candidates of interactions between proteins of the malaria parasite Plasmodium falciparum and the human host, homologous and conserved interactions were inferred from various sources of interaction data. Such candidate interactions were assessed by applying a machine learning approach and further filtered according to expression and molecular characteristics, enabling involved proteins to indeed interact. The analysis of predicted interactions indicated that parasite proteins predominantly target central proteins to take control of a human host cell. Furthermore, parasite proteins utilized their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. In particular, several prominent pathways of signaling and regulation proteins were predicted to interact with parasite chaperones. Such a result suggests an important role of remodeling proteins in the interaction interface between the human host and the parasite. Identification of such molecular strategies that allow the parasite to take control of the host has the potential to deepen our understanding of the parasite specific remodeling processes of the host cell and illuminate new avenues of disease intervention.  相似文献   

3.
4.
Recent years have seen tremendous progress in our understanding of malaria parasite molecular biology. To a large extent, this progress follows significant developments in genetic, molecular and chemical tools available to study the malaria parasites and related Apicomplexa, in particular Toxoplasma gondii. One area of major advancement has been in understanding parasite host-cell invasion, a process that utilizes several essential molecular mechanisms that are conserved across the different lifecycle stages. Here, we summarize some of the most recent experimental data that shed light on the events underlying preparation and execution of malaria parasite invasion and how these insights might relate to the development of new antimalarial drugs.  相似文献   

5.
In India, Mass Drug Administration is on going towards elimination of lymphatic filariasis in many areas, which might lead to intense selection pressure on the parasite populations and their genetic restructuring. This calls for molecular finger printing of Wuchereria bancrofti parasite populations at national level and monitoring genetic changes in the future. For this purpose a reliable, less expensive, rapid, and reproducible molecular tool is necessary, which is not available for W. bancrofti at this time. We identified robust molecular markers based on the comparison of random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) profiles and the genetic data generated from parasite populations collected from areas in Northern (Varanasi, Uttar Pradesh state), Southern (Kozhikode, Kerala State) and Central regions (Jagdalpur, Chattisgarh state) of India, where lymphatic filariasis is endemic for many decades. RAPD profiles for these parasite populations were generated using three different primers and the dendrograms constructed using the profiles were all different. In order to identify appropriate RAPD primer(s), we compared the results of RAPD with the fingerprint profile and genetic data obtained by the more reliable AFLP technique, using the parasite populations from the same areas. RAPD marker (OP8) primer produced phylogenetic data almost similar to that of AFLP analysis. The marker was able to reveal variations between the parasite populations collected from Varanasi, Kozhikode, and Jagdalpur. Most importantly, RAPD primer OP8 produced reproducible results, when tested in three different trials. In view of the limited availability of W. bancrofti parasite DNA, along with a lower cost and ease of performance, RAPD appears to be more suitable compared to AFLP at the present juncture, since complete genome information of this parasite is still not available. Thus, RAPD primer OP8 can be a very useful molecular maker for DNA finger printing of W. bancrofti populations at present.  相似文献   

6.
The purpose of this study was reactivation and adaptation of a strain of Plasmodium vivax to Aotus nancymai monkeys. A need arose for malarial parasites for use in serologic and molecular studies and for teaching slides. This particular strain of parasite had been characterized previously as producing high-density parasitemia in splenectomized New World monkeys and therefore represented a good candidate for reactivation. P. vivax (Vietnam II), isolated in 1970, was reactivated after adaptation in Aotus lemurinus griseimembra monkeys nearly 33 years earlier and adapted to A. nancymai monkeys. Passage was achieved by intravenous inoculation of parasite blood stages into splenectomized A. nancymai monkeys. Parasitemia was determined by analyzing daily blood smears stained with Giemsa. Maximum parasite counts ranged from 10,630 to 94,000 parasites/microl; the mean maximum parasite count for the four animals was 39,565 parasites/microl. Parasite counts of > 10,000/microl were maintained for 2 to 64 days. After only three passages of the parasite, attempts to reactive were successful. A. nancymai proved a suitable animal model for the recovery of this parasite. In conclusion, successful reactivation and adaptation of this parasite offers the capability to perform a series of diagnostic, immunologic, and molecular studies as well as to provide otherwise potentially unavailable teaching materials to healthcare professionals.  相似文献   

7.
Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability to predict how an infection can spread through a host population and for the design of effective vaccines to combat infection and disease. Here, we examine how the genetic structure of parasite populations responds to host genetic heterogeneity. We consider the well-characterized molecular specificity of major histocompatibility complex binding of antigenic peptides to derive deterministic and stochastic models. We use these models to ask, firstly, what conditions favour the evolution of generalist parasite genotypes versus specialist parasite genotypes? Secondly, can parasite genotypes coexist in a population? We find that intragenomic interactions between parasite loci encoding antigenic peptides are pivotal in determining the outcome of evolution. Where parasite loci interact synergistically (i.e. the recognition of additional antigenic peptides has a disproportionately large effect on parasite fitness), generalist parasite genotypes are favoured. Where parasite loci act multiplicatively (have independent effects on fitness) or antagonistically (have diminishing effects on parasite fitness), specialist parasite genotypes are favoured. A key finding is that polymorphism is not stable and that, with respect to functionally important antigenic peptides, parasite populations are dominated by a single genotype.  相似文献   

8.
The human malaria parasite Plasmodium falciparum resides and multiplies within a membrane-bound vacuole in the cytosol of its host cell, the mature human erythrocyte. To enable the parasite to complete its intraerythrocytic life cycle, a large number of parasite proteins are synthesized and transported from the parasite to the infected cell. To gain access to the erythrocyte, parasite proteins must first cross the membrane of the parasitophorous vacuole (PVM), a process that is not well understood at the mechanistic level. Here, we review past and current literature on this topic, and make tentative predictions about the nature of the transport machinery required for transport of proteins across the PVM, and the molecular factors involved.  相似文献   

9.
Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host–parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.  相似文献   

10.
11.
Invasion of erythrocytes by Plasmodium merozoites is a complex process that is mediated by specific molecular interactions. Here, we review recent studies on interactions between erythrocyte binding antigens (EBA) and PfRH proteins from the parasite and erythrocyte receptors involved in invasion. The timely release of these parasite ligands from internal organelles such as micronemes and rhoptries to the merozoite surface is critical for receptor-engagement leading to successful invasion. We review information on signaling mechanisms that control the regulated secretion of parasite proteins during invasion. Erythrocyte invasion involves the formation and movement of a junction between the invading merozoite and host erythrocyte. We review recent studies on the molecular composition of the junction and the molecular motor that drives movement of the junction.  相似文献   

12.
Fasciola hepatica is a food-borne parasite of animals and humans. It secretes a large family of cysteine peptidases, termed cathepsins, that are important virulence factors. Here, we discuss how advances in molecular technologies have helped to probe the function of liver fluke cathepsins, and consider how evolving systems/molecular biology approaches can continue to inform our understanding of these important parasite enzymes.  相似文献   

13.
In this review some emerging issues of parasite infections in wildlife, particularly in Australia, are considered. We discuss the importance of understanding parasite biodiversity in wildlife in terms of conservation, the role of wildlife as reservoirs of parasite infection, and the role of parasites within the broader context of the ecosystem. Using a number of parasite species, the value of undertaking longitudinal surveillance in natural systems using non-invasive sampling and molecular tools to characterise infectious agents is illustrated in terms of wildlife health, parasite biodiversity and ecology.  相似文献   

14.
Although clinically benign, malaria fever is thought to have significant relevance in terms of parasite growth and survival and its virulence which in turn may alter the clinical course of illness. In this article, the historical literature is reviewed, providing some evolutionary perspective on the genesis and biological relevance of malaria fever, and the available molecular data on the febrile-temperature-inducible parasite factors that may contribute towards the regulation of parasite density and alteration of virulence in the host is also discussed. The potential molecular mechanisms that could be responsible for the induction and regulation of cyclical malaria fevers caused by different species of Plasmodium are also discussed.  相似文献   

15.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

16.
In this study we intended to examine the extent of genetic diversity of Plasmodium falciparum parasites causing severe malaria (SM). For this purpose, 100 parasite isolates were obtained from patients with SM and uncomplicated malaria, from an area of low and unstable malaria transmission in Sudan. The diversity of infection (DOI) was estimated by relating the number of the different parasite genotypes that were detected to the total number of parasites that were genotyped (parasite population/subpopulation). We used different molecular markers individually (pfcrt-76, pfmr1-86, GLURP size and MSP2 family and size) and as a group to set a multilocus genetic profile for each parasite isolate. The DOI as estimated by MSP2 and GLURP was 0.553 and 0.435, respectively. However, combination of all four molecular markers (multilocus genetic profile) revealed a fingerprint pattern of genetic diversity with a DOI of 0.936, indicating that in SM infection, diversity is the rule and homogeny is the exception. Furthermore, our clinical data suggest that the virulence markers might also be more diverse than expected. In conclusion, the results are unexpected and overturn the assumption that parasites causing SM are a limited subpopulation of virulent parasites or of a clonal nature. However, it was more likely that there was a genetically unique parasite in each infection.  相似文献   

17.
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines.  相似文献   

18.
When studying how much a parasite harms its host, evolutionary biologists turn to the evolutionary theory of virulence. That theory has been successful in predicting how parasite virulence evolves in response to changes in epidemiological conditions of parasite transmission or to perturbations induced by drug treatments. The evolutionary theory of virulence is, however, nearly silent about the expected differences in virulence between different species of parasite. Why, for example, is anthrax so virulent, whereas closely related bacterial species cause little harm? The evolutionary theory might address such comparisons by analysing differences in tradeoffs between parasite fitness components: transmission as a measure of parasite fecundity, clearance as a measure of parasite lifespan and virulence as another measure that delimits parasite survival within a host. However, even crude quantitative estimates of such tradeoffs remain beyond reach in all but the most controlled of experimental conditions. Here, we argue that the great recent advances in the molecular study of pathogenesis provide a way forward. In light of those mechanistic studies, we analyse the relative sensitivity of tradeoffs between components of parasite fitness. We argue that pathogenic mechanisms that manipulate host immunity or escape from host defences have particularly high sensitivity to parasite fitness and thus dominate as causes of parasite virulence. The high sensitivity of immunomodulation and immune escape arise because those mechanisms affect parasite survival within the host, the most sensitive of fitness components. In our view, relating the sensitivity of pathogenic mechanisms to fitness components will provide a way to build a much richer and more general theory of parasite virulence.  相似文献   

19.
Waters AP 《Cell》2005,122(2):149-151
The life cycle of the malaria parasite (Plasmodium) is remarkably complex. Malaria parasites must engage in highly specific and varied interactions with cell types of both the mammalian host and the mosquito vector. In this issue of Cell, report detailed molecular insights into an intimate interaction between a malaria parasite protein and its host cell receptor that enables the parasite to invade erythrocytes.  相似文献   

20.
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号